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RESUMEN 

 
La conversión de voz emocional es una tarea fundamental en 
el campo del procesamiento del habla, que permite la 
modificación del contenido emocional de un mensaje hablado 
mientras se preserva la identidad del hablante. Este artículo 
presenta un estudio comparativo preliminar de varios 
modelos neuronales aplicados a la conversión de voz 
emocional. Exploramos el rendimiento de modelos de última 
generación: seq2seq-EVC y CycleGAN-EVC. Para ello, 
evaluamos estos modelos en diversos conjuntos de datos 
emocionales y analizamos su capacidad para convertir con 
precisión emociones a lo largo de un espectro de estados 
afectivos. Nuestros experimentos preliminares revelan 
información sobre las fortalezas y limitaciones de cada 
modelo neuronal en la captura y transferencia de matices 
emocionales en el habla. Discutimos factores clave como la 
arquitectura del modelo, el tamaño del conjunto de datos y las 
estrategias de entrenamiento, arrojando luz sobre los 
compromisos entre la complejidad computacional y la 
calidad de la conversión. Además, evaluamos la calidad 
perceptual de la voz emocional convertida utilizando 
métricas subjetivas, ofreciendo una visión completa del 
rendimiento del modelo. 
 

ABSTRACT 
 
Emotional voice conversion (EVC) is a fundamental task in 
the field of speech processing, enabling the modification of 
the emotional content of a spoken message while preserving 
the speaker's identity. This article presents a preliminary 
comparative study of various neural models applied to 
emotional voice conversion. We explore the performance of 
state-of-the-art models: seq2seq-EVC and CycleGAN-EVC. 
To do so, we evaluate these models on various emotional 
datasets and analyze their ability to accurately convert 
emotions across a spectrum of affective states. Our 
preliminary experiments reveal insights into the strengths and 
limitations of each neural model in capturing and transferring 
emotional nuances in speech. We discuss key factors such as 
model architecture, dataset size, and training strategies, 
shedding light on the trade-offs between computational 

complexity and conversion quality. Additionally, we assess 
the perceptual quality of the converted emotional voice using 
subjective metrics, providing a complete view of model 
performance. 
 

Palabras Clave— Emotional voice conversion, deep 
learning, speech processing 
 

1. INTRODUCTION 
 
During the last few years, more and more new models that 
accomplish the task of Voice Conversion (VC) have appeared 
[1,2,3]. These models have revolutionized our ability to 
transform the acoustic characteristics of speech, enabling 
personalized voice modification for various applications. 
However, a notable limitation persists within the majority of 
these models: the inability to alter the emotional cues 
conveyed in speech or, in some cases, the absence of 
emotional cues altogether. To address this critical issue,  
works have emerged, seeking to achieve Emotional Voice 
Conversion (EVC) [4]. This transformation represents an 
extraordinary evolution in the way voice is manipulated, as it 
introduces the capability to infuse synthesized speech with a 
variety of emotions that go from joy to sadness, anger to 
affection. This transformative approach not only opens up 
exciting prospects for enhancing virtual assistants [5], 
human-computer interfaces [6], and emotion-aware 
communication systems [7] but also has profound 
implications for the entertainment and therapeutic domains 
[8]. 
 
The essence of EVC lies in its capacity to imbue synthesized 
speech with the emotional characteristics desired by a user 
while retaining the speaker's inherent identity. Whether it is 
altering a stern, businesslike tone to convey warmth and 
empathy in a virtual assistant or transforming a somber 
narration into one teeming with enthusiasm for an audiobook, 
EVC offers a rich palette of possibilities. Beyond the realm 
of entertainment and user interface design, it finds 
applications in therapy and counseling, where individuals 
may seek to control and modulate the emotions conveyed in 
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their speech to improve interpersonal interactions and convey 
empathy effectively. 
 
As the demand for emotionally expressive synthetic speech 
surges, the role of neural models in driving innovation in this 
field has become increasingly prominent [9]. These models, 
which emerged from the deep learning revolution, have 
demonstrated remarkable capabilities in capturing complex 
patterns in speech data. In this work, we present a review of 
two relevant works concerning neural models for EVC, 
including a preliminary comparative study and assessment of 
the perceptual quality of their outputs via user-based metrics. 
More specifically, we focus on two different state-of-the-art 
models: Seq2Seq [10] and CycleGAN [11]. The chosen 
models represent two different technique trends, each with its 
unique strengths and attributes. Seq2Seq, with its sequence-
to-sequence architecture, has proven itself as a workhorse in 
various natural language processing tasks, VC and speech 
synthesis, promising intriguing possibilities for EVC. On the 
other hand, CycleGAN, originally designed for image-to-
image translation, has been adapted to the audio domain with 
good results, making it an intriguing contender in the pursuit 
of emotional voice synthesis.  
 

2. EMOTIONAL VOICE CONVERSION 
 
The realm of EVC has undergone a remarkable evolution 
over the past few decades, transitioning from classical signal 
processing techniques to the transformative era of deep 
learning. This journey has not only broadened the horizons of 
what is achievable in speech processing but has also 
significantly enhanced the quality and expressiveness of 
synthetic emotional speech. 

 
In the early stages of emotional voice conversion, classical 
signal processing techniques held sway. These approaches 
primarily relied on the manipulation of spectral features, 
prosody, and other acoustic attributes to convey emotional 
variations in speech. Techniques such as pitch modification, 
time-stretching, and formant shifting were commonly 
employed to alter the acoustic characteristics of speech. 
While these methods achieved some level of success, they 
often faced challenges in preserving the naturalness of the 
converted speech and maintaining the speaker's identity. 

 
The advent of statistical parametric models marked a 

significant step forward in the field of emotional voice 
conversion. Techniques like Gaussian Mixture Models 
(GMMs) [12] and Hidden Markov Models (HMMs) [13] 
allowed for the statistical modeling of speech and emotion, 
providing a framework for capturing and synthesizing 
emotional prosody. These models could learn statistical 
relationships between emotional features and acoustic 
parameters, making them a valuable tool for voice conversion 
tasks. However, these models had limitations in capturing the 

intricate nuances of emotional content, often resulting in a 
somewhat artificial-sounding output. The landscape of 
emotional voice conversion underwent a seismic shift with 
the rise of deep learning techniques. Neural networks, 
particularly deep neural networks (DNNs) [14], such as 
convolutional neural networks (CNNs) [15] or recurrent 
neural networks (RNNs) [16] revolutionized the field. These 
models offered the capacity to automatically learn complex 
patterns in speech data, enabling the capture and synthesis of 
emotional content in a more natural and expressive manner. 
The integration of deep learning techniques into emotional 
voice conversion has not only improved the perceptual 
quality of synthetic speech but has also expanded the 
horizons of what is achievable. With the ability to capture and 
synthesize emotional nuances, these models are poised to 
revolutionize various domains, from human-computer 
interaction to entertainment and therapy. 

 
3. NEURAL MODELS FOR EMOTIONAL VOICE 

CONVERSION 
 
In the interest of maintaining the paper's conciseness and 
focus on our experimental findings, we have provided 
condensed descriptions of the models we compare. Detailed 
technical specifications of each model can be found in their 
respective original papers, ensuring that interested readers 
can explore their architectures, training methods, and nuances 
in greater depth. 
 
3.1. Seq2Seq-EVC 
 
The Seq2Seq model [10] initially emerged as a solution for 
machine translation tasks and swiftly demonstrated its 
effectiveness in speech synthesis and voice conversion 
challenges. When integrated with attention mechanisms, it 
not only improves its ability to acquire feature mapping and 
alignment but also enables the conversion process to 
concentrate on emotion-relevant regions, marking a 
significant advancement. Another important advance 
accomplished with this model is the ability to train using non-
parallel and limited data.  This EVC framework encompasses 
five key components, each with distinct functions and 
architectures: 
 
- Text encoder (Et). A convolutional layer stack, followed by 
a bidirectional LSTM and a fully connected layer, is 
orchestrated to adeptly transform textual inputs into linguistic 
embeddings. 
- Seq2seq automatic speech recognition (ASR) encoder. (Er). 
Tasked with utilizing acoustic feature sequences for phoneme 
sequence prediction and automatic alignment. This encoder 
employs two pyramid bidirectional LSTM layers, while its 
attention-based decoder features a single-layer LSTM. 
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- Style encoder (Es). Responsible for transmuting input 
acoustic feature sequences into style embeddings, this 
component features a configuration of stacked bidirectional 
LSTM layers, average pooling, and a fully connected layer. 
- Auxiliary classifier (Cs). The auxiliary classifier plays a 
pivotal role in the framework, primarily focused on 
adversarial training to selectively remove speaker or 
emotional information from the linguistic space. In the 
author's implementation, this classifier adopts a deep neural 
network (DNN) architecture, meticulously designed to 
predict outcomes for each input embedding vector.  
- Seq2seq decoder (Da). Crafted in resonance with the 
decoder architecture delineated in the Tacotron model, as 
referenced in [17], this component skillfully reconstructs 
acoustic sequences by harnessing the combined power of 
linguistic embeddings and style embeddings. 
 
Table 1 serves as an overview of the structural details for each 
component within the framework, offering a clear and 
concise reference for further examination. 
 
Table 1. Summary of the seq2seq framework arquitecture. 

 
Text Encoder Et Conv1D-5-512-BN-ReLU-Dropout(0.5) 

×3 → 1 layer BLSTM, 256 cells each 
direction → 
FC-512-Tanh → Ht 

Recognition 
Encoder 

Er 
encoder 

2 layer Pyramid BLSTM , 256 cells each 
direction, i.e. reducing the sequence time 
resolution by factor 2 

Recognition 
Encoder 

Er 
decoder 

1 layer LSTM, 512 cells with location-
aware attention  → FC-512-Tanh → Hr 

Speaker 
Encoder 

Es 2 layer BLSTM, 128 cells each direction 
→ average pooling → FC-128-Tanh → 
hs 

Auxiliary 
Classifier 

Cs FC-512-BN-LeakyReLU  ×3 → FC-99-
Softmax → Pˆs 

Seq2Seq 
Decoder 

Da 
Encoder 

1 layer BLSTM, 256 cells each direction 

Seq2Seq 
Decoder 

Da 
PreNet 

FC-256-ReLU-Dropout(0.5) ×2 

Seq2Seq 
Decoder 

Da 
decoder 

2 layer LSTM, 512 cells with forward 
attention , 2 frames are predicted each 
decoder step 

Seq2Seq 
Decoder 

Da 
PostNet 

Conv1D-5-512-BN-ReLU-Dropout(0.5) 
×5 → Conv1D-5-80, with residual 
connection from the input to output 

 
Concerning the training strategy, the framework adopts a 
two-stage training process, summarized in Figure 1. The 
initial stage, termed "style initialization," involves the 

model's learning to disentangle speaking style from linguistic 
content. This stage utilizes the VCTK dataset [18], a multi-
speaker TTS corpus. The subsequent phase of training, 
referred to as "emotion training," fine-tunes all components 
initialized in the first stage using emotional speech data.  
During the first stage, the model takes acoustic features (80-
dimensional Mel-spectograms) and phoneme sequences as 
inputs. The text encoder and ASR encoder collaborate to 
predict linguistic embeddings from these inputs. Finally, the 
decoder reconstructs the data from the combined style and 
linguistic embeddings. Notably, the style encoder in this stage 
learns speaker-dependent information while effectively 
excluding linguistic information from the acoustic features, 
aided by an auxiliary classifier.  
 
In the second stage, the previously initialized style encoder 
assumes the role of an emotion encoder. It embeds the 
acoustic features into an emotion vector. Simultaneously, the 
auxiliary classifier, now functioning as an emotion classifier, 
aids in the removal of emotion-related information from the 
linguistic space. This dual-stage training approach enables 
the model to effectively handle both style and emotion 
aspects, contributing to its overall performance and 
adaptability.  
 

 
 
 
Figure 1. Seq2Seq training stages. Extracted from [10]. 
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3.2. CycleGan-EVC 
 
CycleGAN operates as a generative adversarial network 
(GAN), which consists of two neural networks, the generator 
(G) and the discriminator (D), engaging in a competitive 
learning process [11]. The generator attempts to synthesize 
emotionally expressive speech from one emotion domain to 
another, while the discriminator seeks to distinguish between 
real and generated emotional speech. Through adversarial 
training, the generator becomes increasingly proficient at 
converting emotions in speech, creating highly convincing 
emotional voice transformations. 
The network architecture is concisely presented in Table 2. 
For the discriminator, a 2D CNN architecture is employed. In 
contrast, the generator was designed using a one-dimensional 
(1D) CNN, tailored to capture relationships among overall 
features while preserving the temporal structure of the 
speech. The network architecture incorporates a combination 
of downsampling, residual, and upsampling layers, along 
with the integration of instance normalization techniques. To 
achieve upsampling, the authors opted for the pixel shuffler 
method, known for its effectiveness in high-resolution image 
regeneration tasks. 
 
The CycleGAN model incorporates three crucial loss 
functions, each with specific purposes that collectively guide 
the learning process for both forward and inverse mappings 
between the source and target domains, ensuring effective 
and consistent transformations between these two domains: 
 

Table 2. CycleGan architecture summary. 
 

Discriminator D Conv2D-[3x3]-128x2 → 1 layer glu → Conv2d -
Instance Normalization- Conv2d – Instace 
normalization- glu X3 

Generator G Conv1D-15-128 x 2 -> 1 layer glu → conv1d -
instance Normalization – conv1d- instance 
Normalization -glu x2-> (Conv1d -Instance Norm 
– GLU-Conv1d -Instance Norm) with residual 
connection x6 → Conv1d-PixelShuffler-Instance 
Norm- GLU x2 → Conv 1d 

 
- Adversarial Loss: This loss function measures the 
distinguishability between the data distribution of the 
generated data and the distribution of the source or target 
data. The aim is to make the generated data as 
indistinguishable as possible from real data. A smaller 
adversarial loss indicates a closer match between the 
generated and real data distributions, leading to more 
convincing results. 
- Cycle-Consistency Loss: The cycle-consistency loss 
enforces a vital property in CycleGAN. It ensures that if we 
apply the mapping function from one domain to the other and 
then reverse the process, we should obtain the original data. 
This loss encourages the model to maintain consistency and 

fidelity in the transformations it performs, preventing 
undesirable artifacts. 
- Identity-Mapping Loss: The objective of the identity-
mapping loss is to preserve linguistic information during the 
conversion process without introducing external alterations. 
It aims to ensure that the core linguistic content remains 
unchanged in the converted data, emphasizing the importance 
of retaining the original meaning and semantics. 
 
The training phase of the CycleGAN EVC framework is 
depicted in Figure 2. In this framework, 24-dimensional Mel-
cepstral features are employed for spectrum conversion 
training. Additionally, for prosody training, 10-dimensional 
F0 (fundamental frequency) features are utilized for speech 
frames. Notably, the prosody features are computed using the 
Continuous Wavelet Transform (CWT), which decomposes 
the F0 signal into various variations across multiple time 
scales. This modeling approach allows for the comprehensive 
representation of F0, capturing nuances from micro-prosody 
levels to the entirety of the utterance. During the training 
stage, it is important to note that both the target and source 
speeches originate from the same speaker. However, the 
emotions and linguistic content differ between these two sets 
of data. This distinction is a critical aspect of the training 
process, as it facilitates the model's ability to convert 
emotional characteristics while preserving the speaker's 
identity. Furthermore, the inclusion of the WORLD vocoder 
[19] (D4C edition [20]) within the framework is critical for 
fundamental computations. It performs spectral feature 
analysis, F0 estimation, and aperiodicity calculation for the 
input utterance. Additionally, it plays a central role in the 
final step of speech resynthesis following feature conversion. 
 

 
Figure 2. Training phase of CycleGAN. Extracted from [11]. 
 
 

4. DATASETS 
 
In the context of EVC, the availability and quality of datasets 
hold a paramount position in shaping the performance and 
capabilities of the models. Some well-known datasets are 
RAVDESS [21], IEMOCAP [22], ESD [23], CREMA-D [24] 
and EmoV-DB [25]. Following a comprehensive review of 
existing emotional speech databases, we made the decision to 
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proceed with the Emotional Speech Databases (ESD) for the 
development of our comparative study. ESD is designed to 
address several limitations found in existing emotional 
speech dataset. It is characterized by its multilingual nature, 
containing parallel and acted emotional speech recordings. 
The dataset is thoughtfully constructed, featuring 
contributions from 10 native English speakers and 10 native 
Chinese speakers. Each of these speakers has provided 350 
utterances, collectively covering five distinct emotion 
categories: Neutral, Happy, Angry, Sad, and Surprise. All the 
speech data in ESD database is recorded in a typical indoor 
environment with an SNR of above 20 dB and a sampling 
frequency of 16 kHz, ensuring suitability for building state-
of-the-art EVC frameworks. ESD's unique combination of 
attributes, including its multilingual nature, diverse emotion 
categories, and meticulous construction, aligns perfectly with 
the objectives of our research. 
 

6. EXPERIMENTS 
 
In our evaluation, we have focused on comparing the 
performance of the two considered models, Seq2Seq and 
CycleGAN, for specific emotional conversions. Seq2Seq has 
been trained for the neutral-to-happy and neutral-to-sad 
conversions, while CycleGAN has been trained for the 
neutral-to-happy and neutral-to-surprise transformations. We 
recognize that this divergence in training pairs presents a 
challenge in directly comparing the two models in all aspects. 
The selection of these emotional transitions was motivated by 
the desire to assess their practical significance. Happy and sad 
emotional states are commonly encountered in a wide range 
of applications, from human-computer interaction to 
entertainment, while surprise and neutral serve as valuable 
control states for comparison. This approach allows us to 
directly compare Seq2Seq and CycleGAN for the neutral-to-
happy conversion, offering insights into their relative 
performance. Additionally, we provide supplementary 
evaluations, showcasing Seq2Seq's capabilities in the neutral-
to-sad conversion and CycleGAN's performance in the 
neutral-to-surprise conversion. These indirect comparisons 
may not facilitate a direct model-to-model assessment, but 
they provide valuable data on the models' adaptability to 
diverse emotional transitions and their ability to preserve 
speaker identity. While we acknowledge this limitation, our 
comprehensive evaluation across multiple emotional states 
contributes to a more holistic understanding of the strengths 
and limitations of these models in practical applications. 
 
Unlike some tasks in speech processing, where a clear 
ground-truth or reference exists for evaluating correctness, 
emotional voice conversion lacks a definitive benchmark. 
This is due to the inherent subjectivity of emotional 
expression in speech. Consequently, our assessment places a 
particular emphasis on subjective evaluation by human 
listeners, who can provide valuable insights into the 

naturalness and emotional expressiveness of the converted 
voice. While we recognize the intricacies of evaluating 
emotional voice conversion, our approach aims to provide a 
comprehensive and perceptually meaningful evaluation, 
acknowledging the subjective nature of the task. 
 
To address the challenge of assessing the subjective quality 
of emotional voice conversion, we have devised a rigorous 
evaluation methodology. In our subjective evaluation, we 
will engage a panel of 10 human subjects, carefully selected 
for their diverse backgrounds and listening experiences. 
These individuals will play a pivotal role in providing 
valuable perceptual judgments of the converted speech. To 
ensure robust and reliable evaluations, we will employ a 
widely accepted metric known as the Mean Opinion Score 
(MOS). The MOS allows our subjects to assign numerical 
ratings to the quality of the converted speech, effectively 
quantifying their subjective perceptions of naturalness, 
emotional expressiveness, and overall quality. This 
comprehensive and well-established evaluation method, 
coupled with a diverse panel of evaluators, enables us to 
capture a broad spectrum of human perceptions, thus 
enhancing the reliability and validity of our subjective 
assessment. 
 
5.1. Subjective Evaluation 
 
The MOS is a standardized and widely-used method for 
assessing the perceived quality of audio or speech signals 
through subjective human evaluation. It typically employs a 
numerical scale, with 1 being the lowest score (indicating 
poor quality) and 5 being the highest (indicating excellent 
quality). Listeners are asked to assign a MOS rating to each 
converted voice sample, reflecting their judgment of the 
overall quality and naturalness of the speech. During the 
evaluation process, our panel of 10 listeners will individually 
assess a set of converted voice samples. Each listener will 
listen to multiple converted speech samples generated by the 
models under study, encompassing different emotional 
conversions. After listening to each sample, they will assign 
a numerical MOS rating based on their perception of the 
voice's quality. These ratings will be collected for each 
sample. To ensure consistent and reliable evaluations, our 
listeners have undergone a training phase. During this phase, 
they were familiarized with the task and the MOS scale, 
ensuring that they understand the range and meaning of the 
scores. Additionally, they were exposed to a set of reference 
samples representing different emotional expressions, 
allowing them to calibrate their perceptions and align their 
assessments with a common reference point. Listener training 
is a critical step in minimizing inter-listener variability and 
ensuring that evaluations are as objective as possible. 
 
During the actual evaluation experiments, listeners were 
asked to assess the quality of converted speech samples. They 
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were provided with clear and concise instructions, 
emphasizing that they should focus on evaluating the 
naturalness and emotional expressiveness of the converted 
speech. Specifically, they were instructed to consider aspects 
such as how well the emotional content was conveyed while 
preserving the identity of the speaker. Listeners were 
encouraged to provide honest and unbiased assessments, 
using the full range of the MOS scale to reflect their 
judgments accurately. 
 

5.2. Direct Model-to-Model Evaluation: Conveying 
Happiness and Positive Emotions 
 
In our evaluation, we have directed particular attention to the 
direct comparison of two key models, Seq2Seq and 
CycleGAN, with a specific focus on the neutral-to-happy 
emotional conversion. Both Seq2Seq and CycleGAN have 
undergone training for this transformation, enabling a direct 
model-to-model assessment. This particular emotional 
conversion holds significant practical relevance, as it 
frequently appears in applications such as enhancing virtual 
assistants, video games, and human-computer interfaces, 
where conveying happiness and positive emotions is 
essential. By concentrating our evaluation on this shared 
conversion, we gain valuable insights into the relative 
performance of Seq2Seq and CycleGAN, enabling a direct 
and meaningful comparison of their capabilities in conveying 
positive emotional states while preserving the speaker's 
identity. This focused evaluation serves as a key benchmark 
for assessing the models' proficiency in a commonly 
encountered emotional transformation, providing essential 
insights into their respective strengths and limitations in 
practical applications. 
The findings from our analysis are presented in Figure 3, 
where the mean and standard error of the mean are used to 
represent the results. The graph on the right showcases the 
results pertaining to the synthesis quality of the two models, 
while the graph on the left illustrates the results related to the 
closeness to the conveyed emotion. 
When it comes to synthesis quality, CycleGAN surpasses the 
Seq2Seq model achieving a more natural-sounding speech. 
We attribute this improvement to CycleGAN's utilization of 
the Continuous Wavelet Transform (CWT) applied to the 
fundamental frequency (f0) and Mel-cepstral features as 
acoustic characteristics, in conjunction with the WORLD 
vocoder for audio synthesis. In contrast, the Seq2Seq model 
relies solely on mel-spectrograms as acoustic features and 
employs the Griffin-Lim algorithm for audio synthesis.  
When it comes to capturing the conveyed emotion, once 
again, the CycleGAN algorithm outperforms the Seq2Seq 
model. However, it's worth noting mentioning that neither of 
these models appears to effectively convey the happy 
emotion in a readily recognizable manner. 

 
 
5.3. Diverse Emotional Transformations: Assessing 
Model Performance Across Varied Expressions 
 
In our evaluation, we extend our assessment to encompass 
scenarios where Seq2Seq is employed for the neutral-to-sad 
transformation, while CycleGAN is utilized for the neutral-
to-surprise emotional conversion. These selected emotional 
transitions, though distinct from the direct comparison 
mentioned earlier, are equally essential in practical 
applications. Surprise is a common emotional state 
encountered in various contexts, including virtual assistants 
and gaming, where eliciting user engagement and responses 
are paramount. Conversely, the neutral-to-sad transformation 
finds relevance in applications such as narrative storytelling 
and therapeutic interventions, where conveying empathy and 
solemnity is crucial. While this evaluation does not permit a 
direct model-to-model comparison, it provides valuable 
insights into the adaptability and effectiveness of Seq2Seq 
and CycleGAN across diverse emotional transitions. By 
assessing their capabilities in conveying surprise and sadness 
while maintaining speaker identity, we gain a nuanced 
understanding of the models' performance in handling a range 
of emotional expressions, further enriching our 
comprehensive evaluation of their practical applicability. 
The outcomes of our analysis are showcased in Figure 4, 
following a similar format to our previous analysis, with the 
utilization of mean values and standard errors of the mean. 
The graph on the left illustrates the results obtained from the 
CycleGAN model when transitioning from a neutral state to 
a state of surprise, while the graph on the right portrays the 
results from the Seq2Seq model when executing the 
transformation from a neutral state to a state of sadness. 
The results for the CycleGAN model in terms of synthesis 
quality show similarities when transforming to a happy 
emotion compared to the surprise emotion. However, the 
model appears to represent the surprise emotion more 
effectively. We attribute this improvement to the variations 
in the fundamental frequency (f0) associated with different 
emotions. When transitioning to happiness, the f0 changes 
more rapidly, leading to higher-pitched speech, which can 
introduce artifacts that may mask the emotion. In contrast, the 



 

1 Autor de contacto: clara.luzon@voicemod.net 
Copyright: ©2023 First author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 

surprise emotion, while still exhibiting some of these aspects, 
is not as intense in terms of f0 variations, contributing to a 
more accurate representation. 
Similarly, for the Seq2Seq model, we observed similar 
results. The synthesis quality resembles that of transforming 
to a happy emotion, but it seems to better represent the sad 
emotion. This can be attributed to the same reasoning as 
before: sad speech typically lacks rapid fundamental 
frequency (f0) variations, and the f0 values tend to be lower 
compared to the happy emotion. As a result, the emotion is 
less likely to be masked by artifacts stemming from these 
characteristics, leading to a clearer representation of sadness. 
 
 

 
 
Figure 4 shows the MOS, where bars indicate the standard 
error of the mean, for the diverse emotional transformation 
evaluated by the listeners: CycleGan Neutral-to-Surprise 
transformation and Seq2Seq Neutral-to-Sad transformation. 
 
 

6. CONCLUSIONS 
 
In summary, our study has explored the capabilities of 
Seq2Seq and CycleGAN models in the context of emotional 
voice conversion (EVC). Through a comprehensive 
evaluation, we have gained valuable insights into their 
performance across various emotional transformations. In a 
direct comparison for the neutral-to-happy conversion, 
CycleGAN exhibited superior ability to imbue natural and 
emotionally expressive qualities into the converted speech. 
Conversely, Seq2Seq demonstrated suboptimal synthesis 
quality, suggesting room for improvement. Our 
supplementary evaluations CycleGAN's commendable 
adaptability in the neutral-to-surprise transformation and 
revealed improvements in Seq2Seq's effectiveness in the 
neutral-to-sad conversion. While these indirect comparisons 
did not facilitate direct model-to-model assessments, they 
underscored the models' versatility in handling diverse 
emotional transitions.  
However, it's crucial to emphasize that both models, when 
employed appropriately, offer promising avenues for 
enhancing applications spanning human-computer 
interaction, entertainment, and therapy. Notably, the absence 

of a ground-truth for emotional voice conversion remains a 
challenge, underscoring the subjective nature of quality 
assessment in this field. Our employment of a Mean Opinion 
Score (MOS) approach, bolstered by a diverse panel of 
evaluators, serves as a commendable effort to address this 
challenge. Despite the inherent subjectivity, MOS 
evaluations provided robust insights into perceptual quality. 
As we conclude, our findings contribute to a holistic 
understanding of the strengths and limitations of Seq2Seq and 
CycleGAN in practical EVC applications. They also 
emphasize the need for continued research in the evolving 
field of emotional voice conversion, where innovation holds 
the promise of more emotionally expressive and identity-
preserving synthetic voices. 
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