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Abstract 

 

Starting from a one-dimensional Lagrangian-averaged Euler compressible flow model that includes 

the Euler equations when an averaging or coarsening parameter is nil, we develop leading-order 

asymptotic equations as functions of the flow Mach number and the averaging/coarseness parameter, 

and show that the acoustic pressure may be governed by the standard second-order wave equation with 

additional terms which may include second- or fourth-order spatial derivatives. We also discuss the 

physical significance of the Lagrangian-averaged model and prove that, under certain conditions, such 

a model is governed at leading-order by Love’s equation which has also been used to study acoustic 

wave propagation in bubbly liquids and elastic phenomena. A simple modification of the coarseness 

terms in the Lagrangian-averaged compressible flow model yields the Stokes’ acoustic wave equation 

which was previously derived from the one-dimensional Navier-Stokes equations and that also 

governs heat and mass transfer with delays between the fluxes and the flow gradients, seepage flows, 

etc. This latter equation has been solved by means of a second-order accurate, time-linearized, semi-

implicit finite difference method and the results show that an initial pressue condition may evolve into 

a steep front and a dissipative solitary wave (soliton) in infinite domains. 

Keywords: acoustic wave equations, Lagrangian-averaged Euler models, perturbation methods, 

Love’s equation, Stokes’ acoustic equation  

PACS nos. 43.25.+y, 47.40.-x, 47.35.Rs 

1 Introduction 

Lagrangian-averaged flow models were introduced to model the effects of fluctuations on the mean 

flow [1,2]. In these models, averaging is performed at the level of variational principles rather on the 

governing Euler or Navier-Stokes equations. Lagrangian-averaged incompressible fluid models for the 

Euler and Navier-Stokes equations are referred to as Lagrangian-averaged Euler (LAE-        
Lagrangian-averaged Navier-Stokes (LANS-   equations, respectively, and the study of these models 

has shed some light onto the well-posedness and the regularity of the solutions of the three-

dimensional Euler and Navier-Stokes equations [3,4]. In addition, some Lagrangian-averaged 

incompressible fluid models have been successfully used as turbulence models. For compressible 

fluids, Lagrangian-averaged models are usually governed by lengthy equations that may involve high-

order derivatives and inverse elliptic operators, especially in two and three dimensions [5].  

Bhat and Fetecau [6] developed a one-dimensional, Lagrangian-averaged compressible fluid model for 

barotropic fluids based on a modified Lagrangian that includes not only the kinetic and potential 
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energies but also the semi-positive term       
   , where   is a small positive number that represents 

the coarseness of the average. The minimization of the action provides the following equations 

 

            ,                                                   (1) 

 

                        ,                                           (2) 

 
where 

 

                                               ,                         (3) 
 

t is time, x is the spatial coordinate, and  , p and u are the density, pressure and velocity, respectively, 

and   has the dimensions of length.   

Equations (1)-(3) become the well-known one-dimensional Euler’s equations for     that only 

contain first-order derivatives with respect to time (t) and space (x). Note that Eq. (3) contains third-

order derivatives with respect to space. 

Equations (1)-(3) have been the subject of study by Keiffer et al. [7] who considered the 

propagation of weakly-nonlinear, dissipative acoustic solitons in single-phase lossless fluids 

by assuming that the acoustic pressure, i.e., the pressure difference between the actual 

pressure and the equilibrium one, is a quadratic function of the acoustic density and showed 

that, if regularization terms are included at leading-order in the asymptotic expansions in power series 

of the Mach number, the resulting acoustic equation is the well-known (inviscid) weakly nonlinear 

acoustic wave equation previously derived by Lesser and Seebass from the compressible Euler 

equation [8]. Although, their formulation yielded the Love equation of classical elasticity 

theory [9] for zero Mach numbers and the inviscid Blackstock-Crighton-Lesser-Seebass or 

weakly-nonlinear acoustic wave equation for     [8,10], their derivation was based on the 

assumption that the nondimensional acoustic density is on the order of the Mach number times the 

derivative of the velocity potential with respect to time. Such an approximation has frequently been 

used in the acoustic literature for the Euler equations [11-13] but not for the Lagrangian-averaged 

Euler Eqs. (1)-(3); thus, its application is only an approximation. 

In this paper, we consider the Lagrangian-averaged Euler Eqs. (1)-(3) and first show that Eq. (2) can 

be written in a simple conservation-law form after some easy but lengthy algebra. We then combine 

the Euler and Lagrangian-averaged Equler equations to obtain some linear wave equations that contain 

second- and fourth-order spatial derivatives, and then present some modified Lagrangian-averaged 

models that result in other acoustic equations. Finally, a generalized model that includes nonlinearities, 

damping and the Stokes’ and Love’s terms is presented and some numerical results are illustrated. 

Unless otherwise stated, we shall limit our presentation to one-dimensional motions of barotropic 

fluids in the absence of body forces.      

2 Acoustic wave equations 

After some tedious algebra, it may be shown that Eq. (2) can be written in conservation form as  

 

                           ,                                    (4) 
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where                        , and Eq. (1) can also be written as         Moreover, 

partial differentiation of Eq. (2) with     with respect to x, i.e., partial differentiation of the 

Euler equation with respect to x, yields, after some rearrangements  
 

                 
                                                 (5) 

 

which can be substituted into Eq. (4) to obtain 

 

                           
               ,                                                   (6) 

 

which together with the continuity equation and the equation of state for a barotropic fluid, i.e., 

         provide three equations for the three unknowns  , p and u. The substitution of Eq. (5) 

into Eq. (4) is justified provided that   is small which is the condition imposed on Lagrangian-

averaged models. Such a substitution implies that the second term in the right-hand side of Eq. (4) 

which corresponds to a Lagrangian-averaged Euler compressible fluid model can be replaced by that 

derived from the standard Euler’s equation. 

2.1 Mixed Euler-Lagrangian-averaged Euler models: Cut-off frequencies 

By assuming that the density and pressure can be written as the sum of their equilibrium and 

fluctuating (acoustic) values, substitution of these values into Eqs. (1) and (6) as well as into the 

equation of state for a barotropic fluid, i.e.,       , where K is a constant and n is the (constant) 

barotropic exponent, one can easily obtain the following linear equations after neglecting nonlinear 

terms  

 

  
        

  = 0,            
                                                        (7) 

 

   
     

     
  =      

       
  ,                                                     (8) 

 

where the subscript e denotes equilibrium conditions, the primes denote fluctuating (acoustic) values 

and c is the speed of sound. 

Equation (8) reduces to the one-dimensional, linear wave equation for      and contains a fourth-

order spatial derivative. A Fourier analysis of Eq. (8), i.e.,            (         )  where 

        and k and   denote the wavenumber and angular frequency, respectively, shows that the 

dispersion relation corresponding to Eq. (8) is 

 

   =      
                                                                    (9) 

 

and, therefore, the frequency is real for wavenumbers such that          
 and complex, otherwise. 

This means that the formulation presented here is only valid for wavelengths that are larger than or 

equal to     ; therefore, the validity of the model presented here increases as   is decreased. Note that 

the Lagrangian-averaged Euler model presented here reduces to the Euler equation for      
Equation (9) also indicates that the frequency is nil for     and    .   
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2.2 Perturbation methods: Love’s equation 

As stated above, the Lagrangian-averaged Euler compressible fluid model is governed by Eqs. (1) and 

(4) and the state equation       , where    is a small positive number. The presence of    in the 

right-hand side of Eq. (4) suggests that  , p and u be expanded in asymptotic power series of   as 

 

  =                                                                      (10) 
 

where       Substitution of Eq. (10) into Eqs. (1) and (4) and the equation of state yields, to     ), 

 

               = 0,               
                                                (11) 

 

                                 ,                                           (12) 
 

which can be combined to yield 

 

               
                      ,                                       (13) 

 

with analogous expressions for    and   .  

Equation (13) is the well-known Love’s equation which governs the longitudinal motion of a slender, 

elastic rod when the lateral displacements are taken into account and was derived by Love by means of 

a variational approach [9]. Equation (13) has also been derived by Keiffer et al. [7] as indicated in the 

Introduction. However, Keiffer et al. [7]  assumed that the acoustic pressure is a quadratic expression 

of the acoustic density, the Mach number is small and the ratio of the acoustic density to the 

equilibrium density is linearly proportional to the Mach number, and the time derivative of the 

velocity potential; the latter is a frequently used approximation in acoustics of inviscid media 

governed by the Euler’s equations [11]. By way of contrast, Eq. (13) has been deduced here without 

making any assumption about the Mach number; the only assumptions made was that the fluid is 

barotropic and the flow variables can be expanded as asymptotic powers series of the small parameter 

   that appears in the Lagrangian-averaged Euler model. Equation (13) also appears in the modeling 

of transient acoustic waves in isothermal bubbly fluids [14,15], in the theory of seepage of 

homogeneous liquids through fissured rocks [16], etc. It must be pointed out that, in Eq. (13), 

        
     is equal to   

 . 

Compared with Eq. (8), a Fourier analysis of Eq. (13) indicates that     
 

   =      
                                                                     (14) 

 

and, therefore, the frequency is semipositive; it is only zero for    , and behaves as           
  

for         
 and        

             
; of these two limits, only the first one is in accord with 

assumption that    must be small in Lagrangian-averaged Euler models. 

A comparison between the models presented in the previous section and this one, i.e., between Eqs. 

(8) and (13), respectively, clearly indicates that their differences are entirely due to the fact that, in the 

model presented in the previous section, the characteristic term of the Lagrangian-averaged  Euler 

model was replaced by that derived from the Euler’s equations, whereas, in the acoustic model 

presented in this section, only the Lagrangian-averaged Euler equations were used.  
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2.3 Asymptotic Lagrangian-averaged Euler models: Love’s equation  

The derivation presented in previous paragraphs of last section was based on dimensional equations; a 

more convenient and rigorous approach should be based on the use of nondimensional quantities as 

described next. If U and L denote a characteristic velocity and a characteristic length, respectively, the 

nondimensionalization of u and x with respect to U and L, respectively, those of t, p and   with respect 

to     ,          
  and   , respectively, then Eqs. (1) and (4) can be written as 

 

                 ,                                                   (15) 
 

                              ,                                      (16) 
 

where 

 

                                                   ,                      (17) 
 

       is the Mach number and, for convenience the same symbols have been used for both 

dimensional and nondimensional variables. Note that, in Eq. (16),   is dimensionless and no equation 

of state has been specified yet. 

As stated in the Introduction, the validity of the Lagrangian-averaged Euler model employed in this 

paper hinges on the assumption that    be small; if   is      , with     , then Eq. (16) shows 

that the contribution of the   -terms occur at higher-order in an asymptotic (power series) expansion 

of the velocity, pressure and density fields in terms of the Mach number, provided that this number is 

much smaller than unity. For m = 0, however, the effects of the   -terms appear at the same order as 

       and      in the continuity and linear momentum equations, respectively, when power 

series expansions (in terms of the Mach number) are used for the velocity, pressure and   

density fields. Moreover, Eq. (17) implies that the leading-order terms of      in an 

asymptotic power series expansion are       and         for low Mach numbers. 

In what follows, we shall assume that        , the Mach number is small, the second, third and 

fifth terms of Eq. (17) can be neglected (compared with the first and fourth terms) and revert to 

dimensional quantities.  Moreover, by assuming that the density and pressure can be written as the 

sum of their equilibrium and fluctuating (acoustic) values, substitution of these values into Eqs. (1) 

and (6) but with the conditions imposed above yield the following wave equation 

 

   
       

  =          
  .                                                (18)                                                      

    

For a barotropic fluid,          
 , the substitution of which into Eq. (18) yields a Love’s 

equation analogous to that of Eq. (13). For          , with     , the linear wave equation 

is obtained.  

2.4 Asymptotic Lagrangian-averaged Euler models: Stokes’ acoustic equation  

If, in Eq. (2), the term      is replaced by             , where    has dimensions equal to 

length squared over time, and an analysis similar to the one described in the previous section is carried 

out for a barotropic fluid, the following equation results  

 

   
      

    
  =         

  .                                                (19)                                                      
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which is also referred to as Stokes’ acoustic equation. This equation was derived by Stokes in 

1845 [17] in his studies of acoustic wave propagation in a viscous fluid; if an analogy 

between Eq. (18) and that derived by Stokes is made, then           where   denotes the 

shear dynamic viscosity of the fluid [18] which is assumed to be constant. This implies that, under the 

assumptions made at the beginning of this Section, a suitable chosen Lagrangian-averaged Euler 

model yields the same acoustic equation as that for one-dimensional, viscous flow. Both Stokes [17] 

and Rayleigh [19] obtained its corresponding dispersion relation which can be written as  

 

                 
      ,                                                   (20) 

 

which for real wavenumbers implies that the wave frequency is a complex quantity, the real 

and imaginary components of which, i.e.,    and   , respectively, satisfy  

 

                     ,                                                   (21) 

 

  
      

               
                                              (22) 

 

One of the solutions of Eq. (21) is     , for which the fact that    must be real implies 

through Eq. (22) that               ; this means that the wave number must be larger than  

or equal to       
   the inverse of which is really the Stokes’ length scale. The other solution 

of Eq. (21) is              , and the fact that    must be real implies through Eq. (22) 

that               , which is the opposite inequality to one discussed above. 

Although some authors [20-22] have claimed that the solution to the Stokes’ acoustic 

equation does not satisfy causality in the strict sense, i.e., a propagating pulse does not have a 

sharp front but extends asymptotically towards plus and minus infinity, some recent studies 

[23] have shown that all transient solutions of Stokes’ equation are perfectly physical in their 

behavior and, in particular, no infinite wave speed is implied. This result is consistent with the 

dispersion relation (cf. Eq. (20)) which indicates that the phase speed diverges as the 

frequency increases but the attenuation or damping increases without bound as the frequency 

is increased and completely suppresses the infinitely fast, nonphysical Fourier components of 

the acoustic field. 

It is worth noting that Stokes’ equation also appears in conduction heat transfer when there 

are delays between the temperature gradient and the heat flux. For one-dimensional heat 

conduction, the first law of thermodynamics or the energy conservation equation in the 

absence of sources/sinks can be expressed as 

 

                                                                  (23) 

 

where C and T denote the specific heat and the temperature, respectively, and q denotes the 

heat flux. When the heat flux is assumed to obey Fourier’s law, then                   , 

where k denotes the thermal conductivity.  

Substitution of Fourier’s law into Eq. (23) results in a one-dimensional parabolic equation 

which has an infinite speed of propagation; however, if they are time lags or delays between 

the heat flux and the thermal gradients, then Fourier’s law may be modified and written as 

  

   (        )                                                                        (24) 
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where    and    denote the time lags for the heat flux and temperature, respectively. If the 

time lags are much smaller than the observation time, a simple Taylor’s series expansion of 

Eq. (24) yields 

 

                                                                                       (25) 

 
where higher-order terms have been neglected.  

Partial differentiation of Eq. (25) with respect to x and use of Eq. (23) together with the assumption 

that   , C, k, and    and    are constants, yield 

 

                                                                                          (26) 

 

which is a damped Stokes’ equation and the damping comes through the thermal inertial of 

the material. As the time lags tend to zero, Eq. (26) tends to the conventional (parabolic) heat 

transfer equation. Moreover, the hyperbolic part, i.e., the left-hand side, of Eq. (26) is 

characterized by a finite wave speed the square of which is          which depends on the 

thermal diffusivity, the characteristic damping time is    and the analogue to    in Eq. (19) is 

                which is the product of the thermal diffusivity times the ratio of the time lag 

for the temperature to the time lag of the heat flux. Equation (26) is also valid in three 

dimensions provided that the term     is replaced by the Laplacian of T.   

3 Generalization 

In this section, we consider an acoustic wave equation which includes nonlinearities, advection, 

damping and the Stokes’ and Love’s contributions derived in previous sections. This equation may be 

written as 

 

                                            ,                                          (27) 
 

where   is the damping coefficient,      is a nonlinear function of u,   (assumed to be 

constant) is analogous to the square of the speed of sound, and   and   are constant terms that 

account for Stokes’ and Love’s contributions, respectively. In what follows, we shall be 

mainly concerned with             , where the coefficients   and   are constant and are 

associated with linear and nonlinear convection/advection. Equation (27) has an analytical 

solution provided that      When this is not the case, Eq. (27) is nonlinear and must be 

solved numerically as indicated in the next section. 

In order to solve numerically Eq. (27), we first introduce a new dependent variable       , so that 

Eq. (27) may be written as 
 

                                        ,                                          (28) 
 

and then define       ,        , and        , so that Eq. (28) may be written as 
 

                                 .                                          (29) 
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Equation (29) and        have been discretized by means of a trapezoidal (Crank-Nicolson) 

rule in time which is second-order accurate and the nonlinear term      was linearized with 

respect to time, so that the discretization of Eq. (29) results in the following linear algebraic 

equation 

 

            
       

 
         

       

 
      

       

 
             ,    (30) 

 

where 

 

  
  

 
                                          ,               (31) 

and           
 

The first- and second-order spatial derivatives have been discretized by means of three-point, 

fourth-order accurate, compact methods as  

 

  
       

       
 

    
 
    

       
 

       
       ,                                       (32) 

 

  
        

       
 

    
    

 

        
       ,                                       (33) 

 

which can, in turn, be written as 

 
 

 
      

       
        

   
 

    
      

       
                                    (34) 

 
 

  
      

        
        

   
 

         
      

       
  .                  (35) 

 

where    and    are the time step and the spatial step size, respectively, the subscript i denotes 

       , and the superscript n corresponds to        , and equally-spaced grids in space and time 

have been used. An analogous expression to Eq. (35) holds for L. 

Use of Eq. (30) at the i-th grid point together with Eqs. (34) and (35) and the analogous equation to 

Eq. (35) for L provide a block-tridiagonal system of linear algebraic equations for u, F, G and L which 

can be solved by the method of Thomas for block tridiagonal matrices [24]. Although not shown here, 

the implicit method presented in this section is unconditionally (linearly) stable and provides the 

values of u and v and the first- and second-order spatial derivatives of u and the second-order spatial 

derivative of v. 

4 Presentation of results 

Some sample results obtained with the numerical method reported in the previous section are 

presented here. These results are mainly concerned with the propagation of an initially compact 

pressure pulse, its splitting into two pulses travelling in opposite directions and their damping. 

Figure 1 shows that an initially Gaussian pressure pulse of high amplitude splits into two waves that 

propagate in opposite directions in accord with the second-order hyperbolic character of Eq. (27); 

owing to the second term in the left-hand side of this equation, the amplitude of these two waves 
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decreases as time increases due to damping. The pressure pulses that result from the splitting of the 

initial one do not propagate symmetrically due to advection which imposes a flow asymmetry. 

 

  

Figure 1 – Splitting and damping of a pressure pulse. 

 

Figure 2 – Splitting, damping and growth of a pressure pulse. 
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Similar behavior to the one just described has been observed for other cases, at least initially as 

indicated in Figure 2. However, in this case, the asymmetry introduced by the advection terms causes 

that the pulse travelling towards the right increase its amplitude due to the nonlinearity of such terms, 

whereas that travelling to the left is damped. A noteworthy feature of Figure 2 is that u may become 

negative due to the pressure pulse splitting and the convective flow. Although as indicated above, the 

amplitude of the right-travelling wave pulse seems to increase as time increases, it has been found that, 

eventually, the steeping effects associated with the nonlinearities balance the ones associated with 

dispersion and a solitary wave is formed. Such a solitary wave may present an oscillatory tail due to 

the splitting suffered by the initial pressure pulse, and its amplitude decreases whereas its frequency 

increases as time increases. 

If the damping is sufficiently large, it has been observed that the initial pressure pulse tries to split into 

two pulses, but, if the convection terms are sufficiently large, such splitting does not take place; 

instead, the pressure distribution exhibits a knee that is broadened due to damping, whereas the front 

of the wave steepens on account of the nonlinearities. However, if damping effects are stronger than 

those associated with steepening, the wave’s front eventually decreases its slope/steepness and a broad 

pressure pulse results as indicated in Figure 3. This figure clearly shows the stages that a pressure 

pulse undergoes in the presence of convection and damping.  

     

Figure 2 – Splitting, steepening and damping of a pressure pulse. 

A comparison between the results presented in Figures 1-3 clearly shows that there is a competition 

between the nonlinear convection terms that try to increase the steepness of the pressure field and 

those associated with dispersion and damping or dissipation. Depending on which one wins such a 

competition, one may observe a complete damping of the initial pressure pulse, the splitting of the 

initial pressure pulse into two waves travelling towards the right and left, or a steepening of the wave’s 

front with an oscillatory tail. 
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5 Conclusions 

A Lagrangian-averaged one-dimensional Euler compressible flow formulation that includes a (small) 

constant coarseness parameter and reduces to the one-dimensional Euler equation when the coarseness 

parameter is set to zero has been used to derive its corresponding acoustic equations. It has been 

shown that the coarseness term of this model can be written in a simple conservation-law form and 

that, when this coarseness term is replaced by that corresponding to the Euler equations, the resulting 

acoustic equation contains a fourth-order spatial derivative.  

It has also been shown that, if the smallness of the coarseness parameter in asymptotic power series 

expansions of the pressure, density and velocity field, the resulting leading-order acoustic equation is 

that of  Love, contains a fourth-order derivative (twice with respect to space and twice with respect to 

time) and models elastic phenomena as well the propagation of sound in bubbly liquids. 

It is also shown that a simple modification of the coarseness term of the Lagrangian-averaged Euler 

model results in Stokes’ equation which contains a third-order derivative (twice with respect to space 

and once with respect to time) and has been previously derived from the one-dimensional Navier-

Stokes equations for one-dimensional flows under the assumption that the fluid motion is isothermal. 

A generalized acoustic equation which includes damping, nonlinear advection, and the Love’s and 

Stokes’s contributions described in this paper has also been proposed and studied numerically by 

means of a second-order accurate time-linearized Crank-Nicoolson method and thre-point, fourth-

order accurate compact discretizations in space. The results of this method indicate that an initial 

Gaussian pressure distribution may split into two travelling pulses the amplitudes of which decrease as 

time increases; the left travelling pulse may be damped while the amplitude of the right travelling one 

may increase until it becomes a solitary wave of contant amplitude; or, the front of the right travelling 

pulse may steepen but the pulse amplitude decreases whereas its width increases as time increases. 
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