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Abstract 
Here is proposed a generalization of the acoustic pressure transmissibility to multiple degrees-of-
freedom (MDOF) systems. The main objective is to obtain simultaneously the pressure at several 

coordinates (unknown pressures) through a set of measured pressures (known pressures) from other 

points. It can be advantageous, e.g., if the unknown pressures are in locations of difficult access. The 
proposed concept of MDOF acoustic transmissibility is used to develop a simple method to identify 

the location of acoustic harmonic sources in steady-state conditions by relating measured pressures 

against estimated pressures from a numerical or analytical model. In this work a finite element model 

is used. Simple examples are presented to illustrate the identification of punctual sources in one 
dimensional domains, using scalar and/or transmissibility matrix. The obtained results illustrate the 

potential and limitations of the proposed model-based acoustic source localization method. 

 

Keywords: transmissibility matrix, linear acoustic, estimated pressure, source localization, finite 
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1 Introduction 

This work is dedicated to a generalization of the acoustic pressure transmissibility to multiple-degrees-

of-freedom (MDOF) systems and to its computational implementation for simple cases of acoustic 

source localization. This is a preliminary evaluation on the viability and potentialities (as well as 
limitations) of these two new developments. 

Since previous developments from one of the authors [1] – namely in the use of the concept of force 

transmissibility and displacement transmissibility for the dynamical force identification – that its 

generalization to acoustic source localization was considered to be a natural although not a 
straightforward development. Pioneer work on operational acoustic modal analysis (OAMA) using 

transmissibility measurements was published by C. Devrient et al. [2]. In their work, they discuss the 

problem that available techniques presented several difficulties to correctly identify the acoustic 
parameters. For example, the existing experimental Acoustic Modal Analysis techniques use volume 
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acceleration sources while the OAMA technique not. But, an important disadvantage of existing 
OAMA, mentioned in [2], is that the non-measured acoustic sources must be pure white noise 

excitation which in operation cannot always be the case. In order to solve this requirement, they 

combined transmissibility measurements under different loading conditions and shown in their paper 
that acoustic parameters can be identified by that way for the presented example of an acoustic cavity.  

In the present work, the main objective is to obtain simultaneously the pressure at several coordinates 

(unknown pressures) through a set of measured pressures (known pressures) from other points. It can 
be advantageous, e.g., if the unknown pressures are in locations of difficult access. The proposed 

concept of MDOF acoustic pressure transmissibility is used to develop a “simple” method to identify 

the location of acoustic harmonic sources by relating measured pressures against estimated pressures 

from a numerical or analytical model. In this work a finite element (FE) model is used. Simple 
examples are presented to illustrate the identification of punctual sources in one dimensional domains, 

using scalar and/or matrix transmissibility. The obtained results illustrate the potential and limitations 

of the proposed model-based acoustic source localization method. The techniques adopted have been 
successfully generalized by the authors to 2D acoustic problems.  

Finally, note that this identification problem suffers – in common with other inverse problems – from 

the effects of matrix ill-conditioning as well as the ill-posedness of the inverse problem. Another 

consequence is the non-uniqueness of the solution. 

2 Fundamentals 

Like any linear dynamic undamped structural (upper index ‘s’) mechanical systems can be modelled in 
the frequency-domain by the following steady-state equations: 

      ω F =ωX · M· ω-K  s2 s  , (1) 

where K s is the structural stiffness matrix, M s is the structural mass matrix, X(ω) the amplitude 

displacement vector, and F(ω) the amplitude force vector; the same can be set for any linear dynamic 

undamped fluid (upper index ‘f’) acoustic systems that can be modelled in the frequency-domain by: 

      ω Q =ωP · M· ω-K
.

f2f  , (2) 

where K f is the global acoustic stiffness matrix, M f is the global acoustic mass matrix, P(ω) the 

amplitude pressure vector, and Q(ω) the volume acceleration vector. 

As mentioned in Devriendt et al. [2], one can conclude that similar frequency response functions 
(FRF) formula can be applied using the respective modal analysis. The same authors also mention that 

FRF are widely used in the field of experimental modal analysis (EMA) only in recent times the 

transmissibility functions made their arrival in the field of operational modal analysis (OMA) [2,3]. 

The transmissibility functions are the ratio between two signals like, e.g., the displacement 
transmissibility function  that is the ratio of the motion response (output) by the motion excitation 

(input) or the force transmissibility function  that is the ratio of the force response (output/reactions) 

by the force excitation (input). For a description on these concepts from structural vibrations see e.g. 
Lage et al. [1] and Maia et al. [4], and the references therein. 

Ideas of pressure transmissibility are not new, and efforts in their development can be found, e.g.,  in 

[5] where the authors proposed a discrete method for the acoustic transmissibility of a pressure 

transducer-in-capsule used in experiments to measure wall pressure spectra with application to the 
vibration of nuclear reactor fuel rods and heat exchanger tubes.  

In [2], it is introduced the pressure transmissibility function as the ratio of the pressure response 

(output) over the pressure (input) and refer that transmissibility functions are ratios of same type of 
signals as opposed to FRFs which are defined by a ratio between conjugate variables (motions 

response/force input or pressure response/volume acceleration input). One advantage of the 
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transmissibility functions is that they can be measured without the knowledge of the specific excitation 
forces or volume accelerations q of each situation.  

Assuming an one-point acoustic source in the degree of freedom (DOF) k, the transmissibility function 

Tir(ω) is the ratio between the two pressures pi(ω) and pr(ω), respectively measured at the DOFs i and 
r. Note that a careful consideration should be taken to the choice of the reference DOF k [2].  

  
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Assuming multiple point acoustic sources in the DOFs k=1,2,…,n, the transmissibility Tir(ω) is defined 

as the ratio between the two pressures pi(ω) and pr(ω), respectively measured at the DOFs i and r , i.e. 
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3 Methodologies 

Authors propose here two different techniques to obtain the acoustic pressure transmissibility. The 

first one uses a Dynamic Stiffness matrix formulation, while the second uses a FRF formulation. 

3.1 Transmissibility from Dynamic Stiffness Matrix  

As mentioned, linear dynamic acoustic systems can be modelled in the frequency-domain by the 

steady-state system (2). It can be presented in the following form: 

         ω F =ωP ·ωZ , (5) 

where Z is the dynamic stiffness matrix given by K -2M +jC . Here 1j . In inviscid systems 

C is zero, but this matrix can be introduced due to impedance boundary conditions. P is the vector of 
nodal pressures and F is the vector of acoustic loads.  

To obtain the pressure transmissibility, one can consider the following three sets of coordinates named 

as: 1) the set U of coordinates where pressure amplitude are imposed; 2) the set K of coordinates of 
where pressure is known; and 3) the set C of the remaining coordinates. Fig. 1 illustrates this division 

of the acoustic domain (the choice by the letter U can be justified by the fact that these locations will 

be the unknown locations in the localization of the acoustic sources).  
Grouping all the coordinates in the three different sets K, U and C, and F={0,0,0} one obtains: 

 

0

0

0

KK KU KC K

UK UU UC U

CK CU CC C

     
    

    
         

Z Z Z P

Z Z Z P

Z Z Z P

. (6) 

Regrouping the sets K and C in a new set R, then (6) results in the following system of equations. 

 
0

0

RR RU R

UR UU UP

     
    
    

Z Z P

Z Z
. (7) 

When the imposed pressures,
UP  , are known we have the direct problem which is 
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RR R RU UP Z P Z , (8) 

The equation (8) allows to obtain the pressure transmissibility between the sets U and R, i.e. 

 
1( )R RR RU UP P Z Z           1( )Z

RU RR RU

 T Z Z        ( )Z

RU UR UU

 T Z Z . (9) 

 

 
Figure 1 – Schematic illustration of the domain division in set U where pressures are imposed 

(sources); set K where pressures are known (“measured”); and set C with the remaining coordinates. 

 

Note that in practice to extract the transmissibility between the sets U and K, only the k lines and 

columns of 
Z

RUT  are needed. For the pseudoinverse, the number of DOFs of U, i.e. #U, has to be 

greater than the corresponding number of DOFs of R, i.e. #R, which is not expected in practice.  

3.2 Transmissibility from Frequency Response Matrix  

An alternative to the methodology presented in section 3.1, is to use FRFs, i.e. H(), which using the 

same division of the acoustic domain in the sets U, K and C can be presented in the following form: 

         ω F ·ωH =ωP  

K KK KU

K

U UK UU

U

C CK CU

   
    

    
       

P H H
F

P H H
F

P H H

, (10) 

where CF =0 is assumed. From the first and second lines, one can obtain the following equations. 

 K KK K KU U P H F H F , (11.a) 

 
U UK K UU UP  H F H F . (11.b) 

Solving for FU in (11.b), substituting into (11.a), and assuming FK =0 one gets the pressure 

transmissibility between the sets K and U, i.e. 
 

   
1

= H

KU KU UU


T H H . (12) 

3.3 Methodology for the Localization of Punctual Sources in a One-dimensional Domain 

The objective of this source localization is to estimate the positions of n acoustic sources, knowing the 

pressure at some measured points (or positions).  
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Figure 2 – One-dimensional acoustic domain, discretized in 15 coordinates, indicating the set U 

having one source pressure pU (green triangle) and the set K having a measured pressure pK (circle). 

 
The basic idea behind the proposed source localization is to look for the possible set or sets of active 

sources that minimize, over a predefined range of frequencies, the “error” (difference) between the 

components of the measured pressures and the estimated pressures (upper index ‘s’). In the expression, 
nf is the number of frequencies in which the range of frequencies is discretized, and the estimated 

pressure is obtained through transmissibility matrix between K and U using a model of the system. 
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In this work, instead of the error (13), an average correlation coefficient between known and estimated 

pressure curves (which are functions of frequency) is used with Kn known pressures: 

 
1
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K
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



  . (14) 

This multiple correlation of Ps and P (estimated and known pressure) uses covariance (COV) and the 

variance (VAR). The use of this correlation assumes that the pressure amplitude |P| is used, the source 
is treated as imposed pressure amplitude; that in case of more than one source is used  then all sources 

are in phase; the pressure curve for the given frequency range is known in a set of nodes K. The 

localization process works for any given pressure amplitude UP . The method requires a numbered list 

of combinations of nodes where the sources can be applied (in MATLAB, a nchoosek command can 

be used, returning all combinations of the given na nodes taken k sources at a time, successively k = 1, 

2, 3,… The total number of combinations ‘npt’ is defined). The list of possible locations of the 
punctual source(s) starts with the “combinations” or positions number 1,2,3,4,5,….,n corresponding to 

the n coordinates (mesh nodes). It is followed by combinations of possible locations of two sources, 

which [1 2],[1 3],[1 4],…,[1 n]; [2 3],[2 4],[2 5],…,[2 n];…; [n-1 n]. In this way the combination 
number n+1 is related with the positions [1 2], and the combination 2*n is given by the positions [1 n],  

and so on. The list finishes when the predefined maximum allowed number of sources is treated. 

4 Results and Discussion 

To illustrate the proposed methodologies, two verifications and two simple examples are presented.  

4.1 FEA model verification 

A rectilinear tube is modelled considering a plane wave and different boundary condition at the ends. 
Figure 3 illustrates a 3D representation and its simplified 2D axisymmetric model and 1D model. 

Here, we reproduce briefly the FE study published in Cartaxo [7] on the numerical behavior of a sound 

wave propagation in a tube with dimensions Ø40mmx500mm and a harmonic pressure of amplitude 

P=1 Pa applied on left end (first coordinate/node). For the right end, two situations are studied: a) 
completely rigid top i.e. totally reflective top; and b) completely absorbing top.  
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The medium is at a reference pressure and the amplitude is the fluctuation around this mean value. 
While for the anechoic top the model does not present difficulty to achieve the correct wave response 

of the system, for the totally reflective top one can see (Fig. 4 a) that 45 elements were not enough to 

achieve the amplitude with the 1D FE [6] used here, while in [7] Cartaxo used 2D and 3D acoustic FE 
which required 36 elements per wavelength for the same problems.  

 
Figure 3 – Simplification of the 3D acoustic domain to a 1D domain discretized in 15 coordinates. 

 

For a one-dimensional propagation, as within a straight duct, this equation can be simply written as:  

 

2 2

2 2 2

1
0

p p

c t x

 
 

 
. (15) 

It is a one-dimensional homogeneous partial differential equation with constant coefficients that has a 

general analytical solution given by [8]: 

 
- jkx + jkx j t - jkx + jkx 

1 2p(t,x) = [C e  + C e  ]e p(x) = [A e  + B e ].   (16) 

For a harmonic pressure, according to [8] one has, at x= l, A=p0 and B=0 in case of an anechoic end. 

But in the case of a completely reflective end, A=1–B and B=(1/2)(1-j tan(kl)), and the analytical 

solution is: 

 exactp (x) = p0 [cos(kx) + tan(kl) sin(kx)]  (17) 

Both, steady-state solutions are plotted at Fig. 4. The pressure along the axis of length L = 0.5 m can 

be obtained from Eq. (17), considering p0= 1 Pa, and k=(2)/=/c=2fc is obtained with f=1500 Hz 
and c=344 m/s. For the tube with a given radius r we need to verify that kr is less than 1.84.  

Results show that to obtain a solution with an error less than ~ 1%, it required a 1D mesh with 

practically 80 or more elements per wave length. It is well-known – as described, e.g., in [6-8] – the 
difficulty in achieving an adequate accuracy with a standard FEM (h-FEM). Indeed, an insufficient 

number of elements per wavelength result in a badly modeled wave. It is also known as the Pollution 

Error that is given by the form C1hk + C2k
3h2, where the constants are independent of both h 

(characteristic length of the element) and k. It makes clear that an increased number of finite elements 

in a model do not guarantee the improvement in the solution accuracy.  

Due to it, the simulation of wave propagation still is one of the most challenging issues in 

computational mechanics. Indeed, more accurate numerical solutions are needed and one key issue is 
the control of the pollution error [9] when higher frequencies are involved. A detailed discussion on 

this issue for the h-version or h−p version of the Galerkin FEM can be found in [10,11]. So, in order 

to control that numerical error, it is suggested to reduce h in such a way that h2k
3 remains as constant 

as possible, or to use higher order piecewise polynomials or basis functions that are specifically 

tailored to the high frequency. Such techniques, and discussion on it, are out of scope of this work. 
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                                          a)                                                                       b)  

Figure 4 – Plots of the pressure in the 1D model of the tube, discretized in 31 and 46 coordinates (or 

nodes) versus the analytical solution for: a) a totally reflective top, and b) an anechoic top. 

4.2 Verification of the scalar pressure transmissibility  

The purpose here is to obtain the transmissibility functions for the same problem treated in [2]. The 
one dimensional domain is modelled (as in the section 4.1) with sixty 1D finite elements and a total 

length L = 1.24 m (Fig. 5). The acoustic source is located at x=0, and the reference pressure node is in 

the same location. Several transmissibility curves are plotted at Fig. 6 for different measure points ‘i’. 

 
Figure 5 – Illustration of the tube with the acoustic source at one end and a reflective top at the other. 

 
In Figure 6 a), one can observe curves that are similar to the ones obtained by [2], where the pressure 

transmissibility present peaks at different frequencies from the natural frequencies. These peaks occur 

at approximately the same frequencies as in [2]. The differences are due to the fact that, in this work a 
one dimensional mesh is used to model the acoustic medium (cavity), as opposite to [2] where a 3D 

mesh is used. Nevertheless, in both studies only the centerline of the domain is analyzed. Other 

influence factors are the mesh refinement and/or sound speed (c) value used in the calculations.  

                              
                                           a)                                                                 b)  

Figure 6 –Transmissibility plots: a) as obtained in [2]; and b) using proposed equation (12). 

 

Figure 6 b) shows the same transmissibility curves but this time with an imposed pressure instead of a 
source (at x=0). It is clear that the curves in both plots are very similar, as expected. 
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4.3 Verification of the proposed pressure transmissibility matrix 

From this point on, only the formulations proposed at the sections 3.2 and 3.3 are used. Also, for 
simplicity, from now on the tube length used is L=1 m. The concept introduced in those sections, 

opens the possibility to calculate a transmissibility matrix that relates a set K of pressures with another 

a set U of pressures. This concept can be used to locate multiple punctual sources, as e.g. illustrated in  
Fig. 7 where two U coordinates (extremes of the tube) with two K coordinates at x=L/4 and x=3L/4.  

 
Figure 7 – Tube with two sources (triangle marks) and two measure points (circle marks).  

 

 
a)                                                                           b)  

Figure 8 – Plots of the amplitude and phase for: a) the transmissibility matrix between sets K and U ; 

and b) the pressure, at x=3L/4, obtained directly from FE solution vs obtained from 
H

KUT . 

At Fig. 8 a) are presented the transmissibility curves obtained with Z as well as with H, and the 

deviation for the T11 matrix entry, which is very low. Several verifications at distinct points were done, 
as e.g. between pressure values obtained via the transmissibility matrix and ones obtained from the 

standard FE solution (Fig.8 b). In all tested cases the error is associated with the numerical 

representation round-off errors and floating point operations. 

4.4 Source Localization  

4.4.1 Localization of one acoustic source 

Here is presented an application of the proposed transmissibility matrix. As illustrated by the Fig. 9, a 
punctual harmonic source with 3 Pa (amplitude) is to be identified using the data from a measurement 

performed at the right termination and the proposed FE-based localization methodology (section 3.3). 

The range of frequencies used to calculate the transmissibility is 200-1200 Hz. Fig. 10 presents the 
correlation plots having in horizontal axis the number of combination. In both, reflective and anechoic 

cases, the identification was successful i.e. the correct source location (in blue) coincides with the 
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combination that presents the maximum correlation (red square). In the correlation for anechoic cases, 
we still need to clarify why results (Fig. 10b) are better using the real part of P instead of the module. 

 
Figure 9 – Schematics of 1D source identification 

 

                  
                                            a)                                                                           b)  

Figure 10 –Correlation vs combination number for: a) the reflective top; and b) the anechoic top.  

4.4.2 Simultaneous localization of two acoustic sources 

For the tube illustrated at Fig.7, consider a pressure (amplitude) of 3 Pa and 1 Pa at coordinates 
1U  

and 
2U , respectively. The objective is to locate these two sources using the data from a measurement 

performed at the coordinates
1K , or both

1K and
2K . The correct combination of locations given by  

[1, 61] is obtained using one K coordinate, but there are several peaks of high correlation in other node 

combination numbers that are close to submultiples of U coordinates as e.g. the combination [1 21]. 

As expected, it does not happen when two K coordinates are used (Fig. 11 b). 

 

   
                                            a)                                                                           b)  

Figure 11 –Correlation results using: a) only coordinate K1; and b) both coordinates K1 and K2.  



 EuroRegio2016, June 13-15, Porto, Portugal  
 

 

 

10 

5 Conclusions 

A new concept of pressure transmissibility matrix in the frequency domain is proposed and applied to 

the acoustic source localization problem. The authors verified that: 1) obtained the correct positions of 

the sources acting; and 2) the search requires intensive computation. 
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