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Abstract 

Sound propagation in ducts with elliptical cross sections and lined walls is considered using a modal 

decomposition approach. The acoustic fields can be described in terms of Mathieu functions and 

Mathieu radial functions but the use of impedance boundary conditions leads to a coupled system of 

infinite algebraic equations. As a result, coupling of modes with different orders arise. Expressions for 

the determination of the eigenvalues and eigenfunctions are derived in the general case and an 

approximation is introduced for small eccentricity (e < 0.3) that leads to the uncoupling of the system 

of equations and of the modes.  

For small eccentricity the eigenmodes and eigenvalues for the axial wavenumber determined were 

similar to those of ducts with circular cross section, which can be considered as the limiting case as the 

eccentricity tends to zero. The attenuation of modes is always larger in elliptical ducts when compared 

to circular ducts and the imaginary part of the axial wavenumber can be more than 20% higher in the 

examples shown. The real part of the axial wavenumber for elliptical ducts, however, can be either 

smaller or larger than for circular ducts, depending on the frequency and mode order.  

For ducts with larger eccentricities the amount of mode coupling depends on the value of the 

eccentricity. 

 

Keywords: elliptical duct. 

PACS no. 43.20.Mv 

1 Introduction 

In this paper the acoustics of a duct with elliptic cross section, possibly carrying a uniform flow, and 

with lined walls will be considered. Following [1], the solution of the propagation equations in terms 

of Mathieu functions will be discussed. The application of the impedance boundary conditions at the 

duct walls lead to mode coupling, and expressions for the determination of eigenvalues and modes will 

be derived in the general case and in the small eccentricity approximation. Finally, a numerical 

example will be presented for small eccentricity. The eigenvalues and eigenfunctions obtained will be 

compared with those resulting from a finite element solution. 

2 Sound propagation in elliptical ducts 

We consider the propagation of sound in an infinite duct with elliptical cross section. The duct walls 

can be rigid or acoustically lined, with a locally reacting liner with impedance 𝑍. For a sound wave of 

angular frequency ω the acoustic pressure can be given as a superposition of modes 
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 𝑝(𝑥, 𝑦, 𝑧, 𝑡) =  𝑝̂(𝑥, 𝑦)𝑒−𝑖(𝜔𝑡− 𝑘𝑧𝑧) (1) 
 

where 𝑧 is the axial coordinate and 𝑘𝑧is the axial wavenumber of the mode. 𝑝̂(𝑥, 𝑦) is a solution of the 

transverse Helmholtz equation and the transverse wavenumber 𝑘⊥ is given by the dispersion relation 

 𝑘⊥
2 =  (

𝜔

𝑐
)

2
−  𝑘𝑧

2. (2) 

The transverse Helmholtz equation can be solved in elliptical coordinates (𝜉, 𝜂), which are defined by: 

 {
𝑥 = 𝑓 cosh 𝜉 cos 𝜂
𝑦 = 𝑓 sinh 𝜉 sin 𝜂

. (3) 

with 0 ≤ 𝜉 and 0 ≤ 𝜂 <  2 𝜋. For 𝜉 = 𝜉0 , the coordinate curve is an ellipse with semi-major axis 

𝑎𝑒 = 𝑓 cosh 𝜉0  and semi-minor axis 𝑏𝑒 = 𝑓 sinh 𝜉0 . Therefore, the eccentricity of the ellipse is 

𝑒 = 1/ cosh 𝜉0 and the focal distance is 𝑓 = 𝑎𝑒 𝑒. As a result, the duct wall can be defined by either 

(𝑓, 𝜉0) or (𝑎𝑒 , 𝑒). Assuming that 𝑝̂(𝜉, 𝜂)  = 𝜙(𝜂)𝜓(𝜉), the method of separation of variables leads to 

 
𝑑2𝜙(𝜂)

𝑑𝜂2 + (𝑎 − 2 𝑞 cos 2𝜂)𝜙(𝜂) = 0, (4) 

 
𝑑2𝜓(𝜉)

𝑑𝜉2 − (𝑎 − 2 𝑞 cosh 2𝜉)𝜓(𝜂) = 0, (5) 

where 𝑎 is a separation constant to be determined, and 𝑞 is given by 

 𝑞 = (
𝑘⊥𝑓

2
)

2
=  (

𝑘⊥ 𝑎𝑒 𝑒

2
)

2
. (6) 

These are just the angular and radial Mathieu equations and its solutions can be given in terms of 

Mathieu functions. Solutions of (4) that are periodic in 𝜂, given 𝑞, exist only for certain values of 𝑎 

(called characteristic values) [2]. The periodic solutions are the cosine elliptic 𝑐𝑒𝑚(𝜂; 𝑞) function (𝑚 

is a non-negative integer), with a set of characteristic values given by 𝑎 = 𝑎𝑚(𝑞); and the sine elliptic 

𝑠𝑒𝑛(𝜂; 𝑞) function (𝑛 is a positive integer), with a set of characteristic values given by 𝑎 = 𝑏𝑛(𝑞). 

𝑐𝑒𝑚(𝜂; 𝑞) is an even function of η and 𝑠𝑒n(η; q) is an odd function of η. 

Since the set of characteristic values for the 𝑐𝑒m(η; q) and 𝑠𝑒n(η; q) functions are different, each 

function is a solution of a different Mathieu angular equation (4). Therefore, given 𝑞, the periodic 

solution 𝜙 can be either 𝑐𝑒𝑚(𝜂; 𝑞) or 𝑠𝑒𝑛(𝜂; 𝑞), but not a linear combination of both. 

Solutions of (5) must be finite inside the duct. The characteristic values of (4) and (5) are the same. 

Following [3], the radial Mathieu functions related to the even angular functions are denoted 

𝐽𝑒𝑚 (𝜉, 𝑞) and the radial Mathieu functions related to the odd angular functions will be denoted 

𝐽𝑜𝑚 (𝜉, 𝑞). The solutions of the transverse Helmholtz equation in elliptical coordinates are either even 

modes,   𝑝̂⊥(𝜉, 𝜂) =  𝑐𝑒𝑚(𝜂; 𝑞) 𝐽𝑒𝑚 (𝜉; 𝑞),  with 𝑎 =  𝑎𝑚 (𝑞)  and 𝑚 ≥ 0,  or odd modes, 𝑝̂⊥(𝜉, 𝜂) =
 𝑠𝑒𝑚(𝜂; 𝑞) 𝐽𝑜𝑚 (𝜉; 𝑞) with 𝑎 =  𝑏𝑚 (𝑞), 𝑚 > 0. These solutions are periodic in 𝜂 and finite inside the 

duct. 

3 Boundary conditions and solutions for impedance walls 

In the absence of flow the boundary condition for lined walls at the ellipse defined by 𝜉 = 𝜉0  is 

 
𝜕𝑝

𝜕𝜉
− 𝑖 𝛽 Ω √cosh2 𝜉 −  cos2 𝜂  𝑝̂ = 0, (7) 

where 𝛽 = 𝜌𝑐/𝑍 is the specific admittance and Ω is the reduced non dimensional frequency, 

 Ω =  
𝜔𝑎𝑒

𝑐
. (8) 
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For even modes the solutions can be written as a linear combination of products of even Mathieu 

functions and even radial Mathieu functions, 

 𝑝̂(𝜉, 𝜂) = ∑ 𝐴𝑚 𝑐𝑒𝑚(𝜂, 𝑞) 𝐽𝑒𝑚(𝜉, 𝑞)∞
𝑚=0 . (9) 

As shown in [1], substituting (9) in the boundary condition (7) eventually leads to an infinite 

homogeneous system of equations for the coefficient 𝐴𝑚 that can be written as  

 ∑ 𝑀𝑛𝑚
𝑒 (𝜉0, 𝑞) 𝐴𝑚 ∞

𝑚=0 = 0, (14) 

where the matrix elements 𝑀𝑛𝑚
𝑒  

 𝑀𝑛𝑚
𝑒 (𝜉0, 𝑞) = 𝑁𝑚

𝑒  𝐽𝑒𝑚
′ (𝜉0, 𝑞)𝛿𝑛𝑚 − 𝑖 𝛽 Ω 𝐼𝑛𝑚

𝑒 (𝜉0, 𝑞) 𝐽𝑒𝑚(𝜉0, 𝑞). (15) 

are written in terms of the integrals 𝐼𝑛𝑚
𝑒  (𝜉0, 𝑞) and 𝑁𝑚

𝑒  (𝑞): 

  𝐼𝑛𝑚
𝑒 (𝜉0, 𝑞) =  ∫ √1 − 𝑒2  cos2 𝜂

2𝜋

0
  𝑐𝑒𝑚(𝜂, 𝑞) 𝑐𝑒𝑛(𝜂, 𝑞) 𝑑𝜂. (12) 

 𝑁𝑚
𝑒 =  ∫ 𝑐𝑒𝑚

2  (𝜂, 𝑞)𝑑𝜂
2 𝜋

0
. (13) 

The system defined by (11) or (14) can have non trivial solutions if and only if 

 det 𝑀𝑛𝑚
𝑒 (𝜉0, 𝑞) = 0. (16) 

The roots 𝑞𝑟
𝑒 of (16), with 𝑟 = 1, 2, … , ∞, define the allowed values of 𝑞. Each even mode 𝑟 is then 

given by 

 𝑝̂𝑟(𝜉, 𝜂, 𝑧) = ∑ 𝐴𝑚 𝑐𝑒𝑚(𝜂, 𝑞𝑟
𝑒) 𝐽𝑒𝑚(𝜉, 𝑞𝑟

𝑒) exp[𝑖 𝑘𝑧𝑟
(𝑞𝑟

𝑒) 𝑧]∞
𝑚=0 , (17) 

where the coefficients 𝐴𝑟,𝑚 are the solutions of (14) with 𝑞 = 𝑞𝑟
𝑒. 

Similarly, for odd modes, the solution 

 𝑝̂(𝜉, 𝜂) = ∑ 𝐵𝑚 𝑠𝑒𝑚(𝜂, 𝑞) 𝐽𝑜𝑚(𝜉, 𝑞)∞
𝑚=0 , (18) 

with the boundary condition (7) leads to the matrix equation 

 ∑ 𝑀𝑛𝑚
𝑜 (𝜉0, 𝑞) 𝐵𝑚 ∞

𝑚=0 = 0, (19) 

where the matrix elements 𝑀𝑛𝑚
𝑜  and the integrals 𝐼𝑛𝑚

𝑜  (𝜉0, 𝑞) and 𝑁𝑚
𝑜  are 

 𝑀𝑛𝑚
𝑜 (𝜉0, 𝑞) = 𝑁𝑚

𝑜  𝐽𝑜𝑚
′ (𝜉0, 𝑞)𝛿𝑛𝑚 − 𝑖 𝛽 Ω 𝐼𝑛𝑚

𝑜 (𝜉0, 𝑞) 𝐽𝑜𝑚(𝜉0, 𝑞) (20) 

  𝐼𝑛𝑚
𝑜 (𝜉0, 𝑞) =  ∫ √1 − 𝑒2  cos2 𝜂

2𝜋

0
  𝑠𝑒𝑚(𝜂, 𝑞) 𝑠𝑒𝑛(𝜂, 𝑞) 𝑑𝜂, (21) 

 𝑁𝑚
𝑜 =  ∫ 𝑠𝑒𝑚

2  (𝜂, 𝑞)𝑑𝜂
2 𝜋

0
. (22) 

Equation (19) is a system of infinite homogeneous equations for the coefficients 𝐵𝑚 which can have 

non trivial solution if and only if 

 det 𝑀𝑛𝑚
𝑜 (𝜉0, 𝑞) = 0. (23) 

The roots 𝑞𝑠
𝑜 of (23), with 𝑠 = 1, 2 … , ∞, define the allowed values of 𝑞. Each odd mode 𝑠 is then 

given by 

 𝑝̂𝑠(𝜉, 𝜂, 𝑧) = ∑ 𝐵𝑚 𝑠𝑒𝑚(𝜂, 𝑞𝑠
𝑜) 𝐽𝑒𝑚(𝜉, 𝑞𝑠

𝑜) exp[𝑖 𝑘𝑧𝑠
(𝑞𝑠

𝑜) 𝑧]∞
𝑚=0 , (24) 

where the coefficients 𝐵𝑠,𝑚 are the solutions of (19) with 𝑞 = 𝑞𝑠
𝑜. Equations (17) and (24) show that 

the impedance boundary condition couples modes with different values of 𝑚. 

Determining the roots 𝑞𝑟
𝑒 ,𝑞𝑠

𝑜  using the (truncated) determinant can be challenging because of the 

oscillatory nature of the integrating function in the integrals 𝑁𝑚
𝑒,𝑜

 and 𝐼𝑛𝑚
𝑒,𝑜

. A simpler, approximate 

solution, valid for small eccentricity, will be derived next. 
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4 Approximate solution for small eccentricity 

For small eccentricity, the condition 𝑒2 ≪  1 applies. Using the approximation √1 −  𝑒2  cos2 𝜂 ≈

 1 −
1

2
𝑒2  cos2 𝜂  + ⋯ ≈  1, the integrals 𝐼𝑛𝑚

𝑒  and 𝐼𝑛𝑚
𝑜 can be written as 

  𝐼𝑛𝑚
𝑒 (𝜉0, 𝑞) ≈  ∫ 𝑐𝑒𝑚(𝜂, 𝑞) 𝑐𝑒𝑛(𝜂, 𝑞)

2𝜋

0
   𝑑𝜂 = 𝑁𝑚

𝑒 (𝑞)𝛿𝑛𝑚, (25) 

  𝐼𝑛𝑚
𝑜 (𝜉0, 𝑞) ≈  ∫ 𝑠𝑒𝑚(𝜂, 𝑞) 𝑠𝑒𝑛(𝜂, 𝑞)

2𝜋

0
   𝑑𝜂 = 𝑁𝑚

𝑜 (𝑞) 𝛿𝑛𝑚. (26) 

where the orthogonality relations were used. Matrices 𝑀𝑛𝑚
𝑒  and 𝑀𝑛𝑚

𝑜  become diagonal: 

 𝑀𝑛𝑚
𝑒 (𝜉0, 𝑞) = 𝑁𝑚

𝑒  (𝑞)[𝐽𝑒𝑚
′ (𝜉0, 𝑞) − 𝑖 𝛽 Ω  𝐽𝑒𝑚(𝜉0, 𝑞)] 𝛿𝑛𝑚, (27) 

 𝑀𝑛𝑚
𝑜 (𝜉0, 𝑞) = 𝑁𝑚

𝑜 (𝑞)[ 𝐽𝑜𝑚
′ (𝜉0, 𝑞) − 𝑖 𝛽 Ω 𝐽𝑜𝑚(𝜉0, 𝑞)] 𝛿𝑛𝑚, (28) 

and the coefficients 𝐴𝑚 and 𝐵𝑚 are all independent. Therefore, in the small eccentricity approximation 

there is no mode coupling. 

The roots of (16) and (23) in this approximation are obtained by setting each of the diagonal terms of 

(27) and (28) equal to zero: 

 𝐽𝑒𝑚
′ (𝜉0, 𝑞) − 𝑖 𝛽 Ω  𝐽𝑒𝑚(𝜉0, 𝑞), (29) 

  𝐽𝑜𝑚
′ (𝜉0, 𝑞) − 𝑖 𝛽 Ω 𝐽𝑜𝑚(𝜉0, 𝑞). (30) 

The solution no longer depends on the integrals 𝐼𝑛𝑚
𝑒,𝑜

 and 𝑁𝑚
𝑒,𝑜

 also simplifying its evaluation. 

To effectively determine the solution it is necessary to find the roots 𝑞 of (29) and (30) for concrete 

values of the admittance 𝛽, reduced frequency Ω, and eccentricity 𝑒. 

5 Example of a solution for the case of small eccentricity 

In the approximation for small eccentricity, determining the roots 𝑞 of (29) and (30) is equivalent, by 

(6) to determine the eigenvalues of the Helmholtz equation. The eigenvalues 𝑞 were determined for 

ducts with elliptical cross-section of eccentricities 𝑒 = 0.1, 0.2, 0.3 and several values of the reduced 

frequencies Ω, for both rigid walls and walls with admittance 𝛽 = 0.4 +  0.06 𝑖. This value of the 

specific admittance corresponds to a specific impedance 𝑍/(𝜌 𝑐) = 𝑅 +  𝑖 𝜒 =  2.44 −  0.37 𝑖. 

5.1 Comparison with numerical simulations and validation of the approximation 

To validate the solutions and assess their limits of validity we compare the results with the eigenvalues 

obtained numerically. The numerical simulations were developed with the software package 

FreeFem++ [4] using finite elements to solve the eigenvalue problem defined by the transverse 

Helmholtz equation in cartesian coordinates. To compare all the results the problem was made non-

dimensional using as normalization the semi-major axis of the elliptical duct 𝑎𝑒. The eigenvalues 𝜆 of 

the problem are, 

 𝜆 ≡ 𝐾⊥
2 =

4 𝑞

𝑒2 , (30) 

with the dimensionless transverse wavenumber 𝐾⊥ defined using the semi-major axis 𝑎𝑒 of the ellipse 

 𝐾⊥ = 𝑘⊥𝑎𝑒. (31) 

The numerical simulations were performed for dimensionless frequency Ω = 10, to better test the 

validity of the approximation, and admittance 𝛽 = 0.4 +  0.06 𝑖. The mesh generation is based on the 
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Delaunay-Voronoi algorithm, using the number of points defined on the boundary. We increased the 

number of points on the boundary up to 1500 and convergence was evaluated. The number of 

generated triangles and vertices of the mesh depends on the eccentricity, for the same number of 

points on the boundary. For example, in the case 𝑒 = 0.3  and 1500 points on the boundary the 

generated mesh has 382206 triangles and 191854 vertices. Each simulation takes a few minutes to run 

on a small laptop and, by observing the change when increasing the number of points used on the 

boundary from 1400 to 1500 we determined that the accuracy reached is about 6 digits. 

A comparison between the eigenvalues from the approximate uncoupled solution and the eigenvalues 

obtained by the finite elements simulations can be found in Table 1 for dimensionless frequency 

Ω = 10  and eccentricity 𝑒 = 0.3 . The eigenvalues are ordered by increasing real part of the 

approximate solution. The eigenvalues obtained numerically must be correctly matched with the right 

approximate value by inspecting the plot of the numerical solution. The identification becomes 

increasingly difficult for higher eccentricity due to mode coupling, which also change the values and 

the order of the modes. The relative error between the numerical an approximate modes, defined by 

 Δ = 100 × 
|𝜆𝑎𝑝𝑝𝑟𝑜𝑥−𝜆𝑛𝑢𝑚|

|𝜆𝑛𝑢𝑚|
, (32) 

is presented in Table 2 for increasing values of the eccentricity. As expected, the relative errors 

increase with eccentricity. In general the relative errors decrease with 𝑚 and, for same 𝑚, with 𝑛, and 

are larger for even modes than for odd modes. This suggests that mode coupling is more important for 

even modes. For 𝑒 = 0.1 all relative errors are below 0.25% and for 𝑒 = 0.3 they are below 2.3%. 

This justifies the use of the approximate solution for these values of eccentricity. For 𝑒 = 0.5 the 

relative errors are below 5% with the two exceptions of even modes (1,1) and (2,1). For many 

applications these relative errors are still acceptable. For 𝑒 = 0.7  and 𝑒 = 0.9  the relative errors 

increase greatly for some modes and the approximate solution is in general no longer valid. However, 

note that for 𝑛 = 2 the relative errors are small, especially for odd modes. 

As can be observed the error is relatively small for small to medium values of the eccentricity. Only 

for the highest values the relative error is considerable and other modes start to appear before the 

smaller ones when the eccentricity is small. The even modes seem in general to present a larger error, 

possibly to higher mode coupling. Also, the even and odd modes with the same orders 𝑚, 𝑛 became 

more apart, with other modes in between (the modes not displayed before are not shown). 

Table 1 – First 14 eigenvalues 𝜆 = 𝐾⊥
2 calculated by the approximation and numerically, for 𝑒 = 0.3 

and Ω = 10, ordered by increasing real part of the former. 

# 𝑚 𝑛 parity 𝜆𝑎𝑝𝑝𝑟𝑜𝑥 𝜆𝑎𝑝𝑝𝑟𝑜𝑥 

1 0 1 even 4.44722917 - 2.56157386 i 4.4409 - 2.5661 i 

2 1 1 even 10.24112746 - 5.97511718 i 10.2128 - 5.9798 i 

3 1 1 odd 10.25453668 - 6.00181520 i 10.2451 - 6.0033 i 

4 2 1 even 17.42949266 - 9.15006647 i 17.4010 - 9.1446 i 

5 2 1 odd 17.42974538 - 9.15048960 i 17.4020 - 9.1457 i 

6 0 2 even 19.12834037 - 8.80844912 i 19.1027 - 8.7939 i 

7 3 1 even 26.52391244 - 11.86384397 i 26.4911 - 11.8506 i 

8 3 1 odd 26.52391637 - 11.86384884 i 26.4911 - 11.8507 i 

9 1 2 even 31.42251873 - 9.50396579 i 31.3940 - 9.4647 i 

10 1 2 odd 31.55681778 - 9.49133598 i 31.5475 - 9.4785 i 

11 4 1 even 37.73432299 - 14.25407186 i 37.6986 - 14.2337 i 

12 4 1 odd 37.73432303 - 14.25407191 i 37.6986 - 14.2337 i 

13 2 2 even 47.56119203 - 9.78200307 i 47.5555 - 9.7547 i 

14 2 2 odd 47.56833788 - 9.78291173 i 47.5480 - 9.7518 i 
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Table 2 – Relative difference Δ(𝑒) (36) between the approximate and numerically determined modes 

for Ω = 10 and for eccentricity 𝑒 = 0.1,0.3,0.5,0.7,0.9. 

𝑚 𝑛 parity Δ(0.1)  Δ(0.3)  Δ(0.5) Δ(0.7) Δ(0.9) 

0 1 even 0.1508 1.362 3.781 7.151 8.859 

1 1 even 0.2426 2.251 6.622 13.873 21.124 

1 1 odd 0.0803 0.709 1.858 3.113 3.022 

2 1 even 0.1475 1.667 6.370 15.806 29.906 

2 1 odd 0.1433 1.294 3.558 6.479 7.076 

0 2 even 0.1404 0.972 1.484 1.607 0.967 

3 1 even 0.1219 1.183 4.090 12.838 31.925 

3 1 odd 0.1218 1.167 3.561 7.347 9.285 

1 2 even 0.1478 1.305 3.173 3.617 2.304 

1 2 odd 0.0480 0.356 0.653 0.671 0.323 

4 1 even 0.1021 0.970 3.054 8.543 27.840 

4 1 odd 0.1021 0.972 3.014 6.797 10.115 

2 2 even 0.0575 0.813 2.594 4.344 3.018 

2 2 odd 0.0765 0.530 1.179 1.439 0.813 

5.2 Location of wavenumbers on complex plane 

Mode attenuation depends on the axial wavenumbers 𝑘𝑧, which were calculated using (2) and (6). The 

axial wavenumbers can be made dimensionless using the semi-major axis of the ellipse, 

 Kz = 𝑘𝑧𝑎𝑒. (33) 

The dimensionless axial wavenumber can be directly obtained from the dimensionless frequency and 

dimensionless transverse wavenumber: 

 Kz
2 = Ω2 − 𝐾⊥

2. (34) 

The location of the dimensionless axial eigenvalues (33) in the complex plane are shown in Figure 1 

for circular and elliptical ducts with lined walls, for two values of eccentricity (𝑒 = 0.1, left, and 

𝑒 =  0.3, right) and three different values of the reduced frequencies (Ω =  1, 5, 10, from top to 

bottom) for the 𝑚 = 0 even modes. Only right-running modes (with positive real part) are shown. The 

symmetrical solutions of (2) that lie in the third quadrant and correspond to left-running modes are not 

shown. For circular ducts the dimensionless wavenumbers 𝐾̃𝑧
2 =  𝑘𝑧 𝑅 were determined using 

 K̃z
2 = Ω̃2 − 𝐾̃⊥

2. (35) 

and 

 𝐾̃⊥ 𝐽𝑛
′ (𝐾̃⊥) − 𝑖 𝛽 Ω̃ 𝐽𝑛(𝐾̃⊥) = 0 (36) 

with a radius 𝑅 = 𝑎𝑒. Note that in a circular duct the dimensionless wavenumber is 𝐾⊥ = 𝑘⊥𝑅, and the 

reduced frequency is  Ω̃ = 𝜔 𝑅/𝑐 were used. 

For lined ducts, all modes are attenuated, but some lie near the real axis and are lightly attenuated, 

corresponding to the propagating modes in rigid ducts. Others modes lie near the imaginary axis and 

are strongly attenuated, corresponding to cut-off modes in rigid ducts. 

This is clearly seen in Figure 1: for Ω = 1 (top graphics) all modes except the first (𝑛 = 1) are 

strongly attenuated. As the frequency increases, more modes approach the real axis, and some modes 

are in a “transition region”, moving from the vicinity of the imaginary axis to the vicinity of the real 

axis. The figure also shows that for the smaller eccentricity (graphics on the left), the axial 
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wavenumbers for the elliptical ducts are similar to those of the circular duct. For 𝑒 = 0.3  the 

imaginary part of the axial wavenumbers for elliptical ducts is greater than for circular ducts, which 

means that axisymmetric (𝑚 = 0) modes in elliptical duct have higher attenuation. The real parts are 

also different, especially on the “transition” modes, that is, the modes that are neither near the real axis 

(lightly attenuated modes) nor near the imaginary axis (highly attenuated modes). However, it is 

difficult to identify a definite trend.  

The location in the complex plane of the axial eigenvalues for the 𝑚 = 1 modes for circular and 

elliptical ducts with lined walls, for two values of eccentricity (𝑒 = 0.1, left, and 𝑒 =  0.3, right) and 

three different values of the reduced frequencies (Ω =  1, 5, 10, from top to bottom) is shown in 

Figure 2 for even modes and in Figure 3 for odd modes. The main features are the same as in the 

previous case. In both cases the modes for elliptical ducts have larger imaginary part and are therefore 

more attenuated than the corresponding modes for circular ducts, and this effect is stronger for larger 

eccentricity, as would be expected. The real part of the odd modes is smaller than for even modes and 

tend to be smaller than for circular ducts for the two larger frequencies. 

 

 
Figure 1 – Location of axial eigenvalues in complex plane for circular ducts (♦) and for even modes of 

elliptical ducts (□), 𝑚 = 0 and Ω = 1 (top), 5 (middle) and 10 (bottom), in the case of 𝑒 = 0.1 (left) 

and 𝑒 = 0.3 (right), for lined duct with wall admittance 𝛽 = 0.4 +  0.06 𝑖. 
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Figure 2 – Location of axial eigenvalues in complex plane for circular ducts (♦) and for even modes of 

elliptical ducts (□), 𝑚 = 1 and Ω = 1 (top), 5 (middle) and 10 (bottom), in the case of 𝑒 = 0.1 (left) 

and 𝑒 = 0.3 (right), for lined duct with wall admittance 𝛽 = 0.4 +  0.06 𝑖. 
 

6 Towards the solution for all values of the eccentricity 

As stated before the solution in the case of arbitrary eccentricity is much more challenging because the 

matrix elements 𝑀𝑛𝑚
𝑒  (15) and 𝑀𝑛𝑚

𝑜  (20) are no longer diagonal and the coefficients 𝐴𝑚 in (14) and 

𝐵𝑚  in (19)are no longer independent. The integrals (12), (21), (13), and (22) (i.e. 𝐼𝑛𝑚
𝑒,𝑜

 and 

𝑁𝑚
𝑒,𝑜, respectively) must be determined in their general form for any value of the eccentricity to 

determine each individual term in the matrix. The system of infinite homogeneous equations for the 

coefficients (14) and (19) will have non-trivial solution only if the determinant of the matrix (16) and 

(23) are zero, respectively. Determining the roots q using the (truncated) determinant is challenging 

due to the oscillatory nature of the integrals. A simple numerical approach using a Computer Algebra 

System (Mathematica®) to help evaluate the integrals did not work, even for the case of a very small 

determinant as approximation, confirming the expected difficulties. To solve the problem it will be 
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required to acquire knowledge about the dependence of the integrals (12), (13), (21), and (22) with 

eccentricity, their convergence, and stability. 

Preliminary calculations show that the integrals 𝐼𝑛𝑚
𝑒,𝑜

 can be transformed in an infinite series that can be 

transformed in a (infinite) normal form whose matrix coefficients depend only on a function 𝑊𝑛(𝑒) 

that depends only on the number of the column or row of the matrix and on the eccentricity (and not 

q). However. it is a challenge to calculate 𝑊𝑛(𝑒) numerically because it involves complete elliptic 

integrals and show as a difference of two large numbers with a small result that decreases even further 

with the increasing order of the series, while the large numbers increase. For example, in the case of 

𝑒 = 1/2 the function 𝑊𝑛(𝑒) for increasing values of n evaluates to: 

 𝑊8 (
1

2
) = −2 [42899 𝐄 (

1

2
) − 37344 𝐊 (

1

2
)] 45⁄ = −3.036911 × 10−6 , (37a) 

 𝑊12 (
1

2
) = −2 [222040399 𝐄 (

1

2
) − 193288344 𝐊 (

1

2
)] 2145⁄ = −8.2168412 × 10−9, (37b) 

 𝑊20 (
1

2
) = −2 [1283967123044269 𝐄 (

1

2
) − 1117705967388744 𝐊 (

1

2
)] 6928355⁄  

 = −9.8710337 × 10−14, (37c) 

 

 
Figure 3 – Location of axial eigenvalues in complex plane for circular ducts (♦) and for odd modes of 

elliptical ducts (□), 𝑚 = 1 and Ω = 1 (top), 5 (middle) and 10 (bottom), in the case of 𝑒 = 0.1 (left) 

and 𝑒 = 0.3 (right), for lined duct with wall admittance 𝛽 = 0.4 +  0.06 𝑖. 



 EuroRegio2016, June 13-15, Porto, Portugal  

 

 

 

10 

where the numerical coefficients depend on the eccentricity and 𝐄(𝑒), 𝐊(𝑒) are the complete elliptic 

integrals of first and second kind, respectively. This situation leads rapidly to huge numerical errors. 

To solve the problem it will be necessary to transform the function 𝑊𝑛(𝑒) into something that avoids 

this situation. This is only part of the problem but it seems the origin of the numerical difficulties 

found in the attempt of solving the problem directly. 

7 Conclusions 

In this paper sound propagation in ducts of elliptical cross-section and lined with locally reacting 

liners was considered. The acoustic pressure field can be described in terms of Mathieu functions and 

radial Mathieu functions. The impedance boundary conditions lead to a system of an infinite number 

of algebraic equations, which results in the coupling of modes of different orders. The approximation 

for small eccentricity leads to the uncoupling of the system of equations and of the modes. 

Comparison with FEM simulations validates this approximation for 𝑒 ≤  0.3  and shows that for 

𝑒 ≤  0.5  results are still acceptable. For higher values of the eccentricity the results from the 

approximation give large relative errors for some modes. Results for odd modes are in general better 

than for even modes, suggesting that mode coupling is more important for the latter 

The eigenmodes and eigenvalues for the axial wavenumber that were determined for the case of small 

eccentricity were similar to those of ducts with circular cross-section, which can be considered as the 

limiting case as 𝑒 → 0. The attenuation of modes is always larger in elliptical ducts when compared to 

circular ducts and 𝐼𝑚(𝐾𝑧) can be more than 20% higher in the examples shown. The real part of the 

axial wavenumber 𝐾𝑧 for elliptical ducts, however, can be either smaller or larger than for circular 

ducts, depending on the frequency and mode order 

The cut-off frequency of rigid ducts was found to be an important parameter for the behaviour of the 

modes, at least for the example shown, in which a small admittance was used. The usual classification 

in evanescent and propagating modes is no longer valid. However, modes can be classified as: (i) 

strongly attenuated, for frequencies much smaller than the cut-off frequency of the mode; (ii) lightly 

attenuated, or ``propagating'', modes, for frequencies much larger than the cut-off frequency; and (iii) 

transition modes, for frequencies comparable to the cut-off frequency. This classification has been 

used before for lined circular ducts, and it remains valid for lined elliptical ducts of small eccentricity. 

A difficulty in dealing with the general case of arbitrary eccentricity was identified that can suggest a 

line of action to find the general solution. 
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