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Abstract 

In current work we present a novel framework for characterizing and inverting underwater acoustic 

signals using pattern recognition clustering techniques which have been widely used in speech 

recognition, financial forecasting and generally in time series analysis. The new model is as a 

probabilistic model-based approach to characterize waveforms using time-frequency features using a 

discrete Wavelet Packet Transform (WPT). Unlike to our previous inversion works using statistical 

features of the sub-band coefficient of the wavelet transform of the signals, we take into account the 

sequential patterns of the signals in order to obtain a more precise characterization and hence to get 

more reliable inversion results. A set of Hidden Markov Models (HMMs) adapted to a group of 

training signals are applied to achieve the final feature extraction vector for each signal with posterior 

distributions. The training of the HMMs is performed by exploiting the k-mean like clustering 

approach with hmm posterior distribution as similarity measure. Each of the described feature vector 

has as its elements the posterior conditional probabilities given each one of the Hidden Markov 

Models. These posterior feature vectors constitute the inputs of a Mixture Density Network (MDN) 

whose outputs represent posterior probabilities densities of the inverted parameters. Experimental geo-

acoustic inversion results based on a simple Pekeris environment are presented and are compared to 

the results obtained by a Statistical Characterization Scheme also developed by authors as a first 

measure of the robustness of the proposed new scheme. 
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1 Introduction 

The goal of the work presented here is to study an approach for inverting acoustic signals recorded in 

the marine enviroment for the recovery of the environmental parameters, using sequential features of 

the signal for its characterization and a neural network which provides conditional posterior 

distribution functions of the recoverable parameters. Generally, inverse problems in underwater 

acoustics are associated with measurements of the acoustic signals in the time domain. A pair of 

observables d   and the corresponding unknown environment parameters m  forms the input and the 

output of a inverse problem respectively. The general form of a non-linear inverse problem is given by 
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 ( ) 0,T m d ,  (1) 

where T  is an apropriate non-linear function. In the current work, we propose a geoacoustic inversion 

scheme that combines several mathematical and machine learning ideas implemented in three 

successive steps: In the first step, a recorded discrete signal from a single receiver is associated with 

the effective part of the Wavelet Packet Transform spectogram after decomposing it in L levels 

keeping both the detail and the approximation coefficients in each level. In the second step, a 

clustering scheme of Hidden Markov Models is built using an approach described in Section 3. The 

extracted features from the first step are used in order to obtain probabilistic assigments to each one of 

the cluster nodes. Thus, a vector of the posterior probabilities is considered including information 

about the sequential patterns of the recording. In the last step of the proposed scheme, the second order 

feature vector of the signal consists the input of a probabilistic feed-forward neural network. For a 

given input vector this network provides a conditional posterior distribution function for the model 

parameters |( )p m d . Finaly, a first validation test of the new scheme is presented in section 6 using a 

simple geoacoustic inversion case in which, the recoverable environmental parameters are those of the 

semi-infini sea-bed.  

2 Wavelet Packet Transform for Feature Extraction 

We consider a set of model parameter vectors 
(1) ( ){ , },m m

I
 and a set of discrete acoustic signals 

(1) ( )},{ ,s s
I

corresponding to the model vectors of same index for a specific unerwater environment . 

The signals are typically synthetic obtained by some approprtaie propagation model. We denote by D  

the set of model parameter – signal pairs, so that 

 

 
(1) ( ) ( ) ( ){( ),, ,, ( )}i m s m s

I ID   (2) 

 

We apply a Wavelet Packet Transform (WPT) [1] which is an extension of the typical Wavelet 

Transform (WT) the  foundamental difference from which is that in WPT both the detail and 

approximation coefficients in each level are decomposed in order to form a full binary tree of 

coefficients as shown in Fig 1. After the decomposition of the discrete signal with N samples by L 

levels the spectogram of the signal is defined. This spectogram is a matrix with 2L
rows (frequency 

scales) and 2 LN  columns (time windows) as depicted in Fig 2. For feature extraction we choose the 

submatrix of the spectogram that includes values above a certain threshold. Thus, a given acoustic 

signal 
( )i

s   decomposed in L levels using the WPT can be associated with a time sequence of vectors 

formed by the N    columns 
( ) ( )

1 ,,i i

N x x   of the submatrix of the signal’s wavelet packet spectogram. 

Therefore each one of the signals in the dataset D is characterized by the set X
(i)

 :  

 

 
( ) ( ) ( ) ( )

1 , ,{ , }, 1,i i i i

N i  s X x x I   (3) 

 

3 Hidden Markov Models Clustering 

Our goal is to use a clustering scheme that can perform grouping of the signals based on the feature 

vectors obtained by the wavelet feature extraction procedure described above. In this scheme each 
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signal can be associated with a set of posterior probability densities which are associated with the 

likelihood of these features to be described by each cluster. For this purpose we are using Hidden 

Markov Models as cluster nodes. With that choice, our clustering scheme is able to take into account 

the sequential characteristics of the feature vectors of the signal. Thus, the clustering scheme takes as 

inputs the wavelet packet features of a signal and provides a unique feature vector for it.  

 

Following Elliot et al. [2] we can construct a Markov chain of latent variables so that each one of the 

observed feature vectors nx  depends on the value of a corresponding latent variable nz . A key 

property of this model is the conditional independency between 1nz  and 1nz  if the value of nz  is 

known, which was proven in [3].  

 

Each latent variable is dictated by a discrete multinomial variable represented with a K-dimensional 

vector 1( , , )T

n n nKz z z in which, only one of the elements equals 1, and all other elements equal 0. 

Despite the fact that latent variables are unobserved, they govern the way that the observed data are 

generated. Note that K  is the number of states as determined in Markov chain theory. 

 

 

 

Figure 1: Discrete Wavelet Packet decomposition by L=3 levels 

 

 

Figure 2: Time-Frequency resolution matrix of an acoustic signal. 
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Figure 3: Markov chain of latent variables. 

 

In order to determine the probabilistic model to be used to signal characterization, we have to define 

the marginal probabilities for the first latent variable 1z  which is the only one totally independent. So, 

we choose a vector 1( , , )K  π  where 

 1( 1), 1 ,,k kp z k K     (4) 

This vector must obey the relation 
1

1
K

k

k




 . 

Also, we denote by A  the matrix with elements the transition probabilities from one state to another. 

For example, the element ijA  expresses the probability to move from the i-th to the j-th state. 

Therefore: 

 1,1| 1( ) , , 1, ,nj n i ijp Az z i Kj       (5) 

 

Note that each row of the transition matrix has sum equals to 1. The last step is to define the 

conditional distributions of the feature vectors given the corresponding latent variables. In our case we 

have chosen to model these distributions via a Mixture of Gaussian Distributions with diagonal 

covariance matrices, governed by a set of parameters 1,{ , }k  θ , so that 

  

 
1

| 1, ) ( ),; , 1, ,(
Q

k k k

n nk k q n q q

q

p w kz K


  x x μ ΣN   (6) 

where {0,1}k

qw  with 
1

1, 1,...,k

q

k

K

w q Q


  . 

 

As it is easily understood, the whole model is governed by the three families of distributions described 

above. So, we can denote as a Hidden Markov Model (HMM) the set of parameters λ . 

 

 { , , }λ π A θ   (7) 

 

The joint distribution for the HMM is given by 

 1 1

2 1

( ) ( |, | ) ( | , ) ( )| ,[ ]
N N

n n n

n

n

n

p p p p

 

  X Z λ z π z z A x z θ   (8)  

Let us denote by ,X Z  the supersets of the features and latent variables respectively, for each one of 

the signals in the data set 
(1) ( ){ , },s s

I
, thus: 
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(1) ( ) (1) ( )

1 1

(1) ( ) (1)

(1) ( )

(1)

1

)

1

(( )

{ , } { , }, ,{ , }, , ,

, ,{ , } { , ,}, ,{ , }

N N

N N

     

     

X X x x x x

Z Z z z z z

I I I

I I I

X

Z
  (9) 

 

The joint probability distribution of ,X Z  given a HMM descibed by λ  is obtained as following 

 

 
( ) ( )

1

( ) (| | ), ,i i

i

p p


λ X Z λ
I

X Z .  (10) 

 

Marginizing over the latent superset we get the log-based likehood distribution for the features 

 

 ln ( | ) ln ( , )|p p λ λZX X Z .  (11) 

 

For minimizing the (1.10) we use the Expectation Maximization Algorithm (EM) [4] which is an 

iterative optimization procedure for statistical models including hidden variables. In each iteration EM 

starts with 
old

λ , performs two distinct steps and provides an updated 
new

λ as described below: 

 

 

1. E step: Evaluate the probabiliuty
old| ,( )p λZ X   

2. M step: Evaluate the new estmation of the HMM parameters 

 
new oldargmax ( , ) λλ λ λQ   (12) 

 where, 

 
old old( , ) | , ln ( , |( ) )p pλ λ λ λZQ Z| X X Z   (13) 

 

3. Termination criterion: Check for convergence of the log-likelihood function 

 
new oldln ( | ) ln ( | ) t l| | op p λ λX X   (14) 

 If the criterion is not satisfied, set 
old newλ λ  and return to step 1. 

 

Having the tools for maximizing the likelihood function ready, we shall pass to our main goal of 

clustering using a set of HMMs. 

 

We radomly construct a set of J HMMs as 
1,{ , } λ λ

JL . We use a simple k-means [4] like 

approach to achive the clustering of the acoustic signals. The difference is that the k-means algorithm 

uses the Euclidean norm for doing the cluster assignations, while our algorithm uses the posterior 

probabilities of the set of HMMs instead. The procedure is described by the following steps: 

 

1. Draw J signals from the data set at random and assign each with a member of L .  

2. Evaluate the log-probabilities for all pairs signal-HMM 
( ) ( )ln ( , )i i j

j pd  X λ . 

3. Assign each 
( )i

X  to the 
*j -th HMM, where 

* ( )argmin ( )i

j jj d  . 

4. Adapt all the HMMs in respect to all their assigned feature vectors. 

5. If the assignations still changing return to step 2. 

 

Having created and adapted the set L  of HMMs we are able to use the vector of log-scale 

probabilities as signal features  
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( ) ( ) ( ) ( ) ( ) ( )

1{ }, ,, , ,1i i i i i id id     m s X d J I   (15) 

 

These features have taken into account the sequential structure of the acoustic signals. After 

performing a proper standarding (zero means and unit variances) these features are using for 

visualizing the estimate values as the final step of our inversion scheme. 

4  Posterior Distributions via a Mixture Density Network 

Using the characterizations (15), we are transforming the data set D  to define the training set G   

 

 
(1) (1) ( ( )){( , ), ,, ( )} m d m d

I IG   (16) 

 

We denote by M the dimension of the model parameters 
( )i

m  and J  the dimension of the feature 

vectors
( )i

d . It should be clear that both vectors in each pair are normalized in order to have zero mean 

and one standard deviation. 

 

Extending the approach proposed by Williams [5] to use mixture multivariate Gaussian densities with 

full covariance matrices, we build a Mixture Density Network (MDN) that takes the elements of a 

feature vector d  as input and yields the marginal posterior distribution of the unknown model 

parameter vector m .  

 

 
1

| ) ( ) ( | ( ), ( )( )
K

k k k

k

p 


m d d m μ d Σ dN   (17) 

where N denotes the normal distribution function , ( )kμ d  is the mean value vector and ( )kΣ d  is the 

covariance matrix of the 
thk  component of the mixture.  Williams has used the Cholesky factorization 

to the inverse of the covariance matrices which is nessesery in the calculation of the normal 

distribution 

 

 
1( )( ) () T

k k k

 Σ d U d U d   (18) 

where kU  is an upper triangular matrix with strictly positive diagonal elements. 

 

 

So, each normal distribution in the mixture depends on the kμ  vector and kU  matrix and therefore 

after performing simple calculations it can be expressed as following : 

 

 
/2 2

2(( | ( ), ( )) (2 ) det( )exp 0.5) ( ()( )M

k k k k k   m μ d U d U d U d m μ dN ‖ ‖ ( ))   (19) 

 

 

In our implementation, we use a feed-forward neural network of a single hidden layer with H  nodes, 

as illustrated in Figure 4, and  outputs which generates, with proper transformation functions, a 

mixture Gaussian distribution with K  components. The outputs of the network express the elements 

of , ,k k k μ U  using appropriate activation functions. 
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Figure 4: Mixture Density Network with a single hidden layer. 

The network have K  outputs 1, ,{ }k

k K  O   that determine the mixing weights ( )k x , K M  outputs 

, 1, ,

1, ,{ }k j j M

k K

 

 μ
O  for the mean values ( )kμ d , K M  outputs 

, 1, ,

1, ,{ }k j j M

k K

 

 U
O  corresponding to diagonal 

elements of the matrices kU  and 
2( ) / 2MK M   outputs 

, , 1, , , 1, ,

1, ,{ }k i j i M j i M

k K

    

 U
O  that determine the 

upper-diagonal elements of the matrices kU . For mixing weights we use the softmax function over 

the
k

O , thus: 

 

 

1

)exp(

e

( )

xp( )

k

k K
j

j












d

O

O

  (20) 

Since the means ( )kμ d  get real values, the network outputs consist of: 

 

 
,{ } k j

k j  μ
μ O   (21) 

 

As diagonal elements of the matrices kU  we take the exponentials of the corresponding outputs while 

for upper diagonal elements we take values directly from the network outputs. Therefore each kU  

upper diagonal matrix is obtained by the index-form formula: 

 

 

 

,

, ,

,

( )

{ ,

0,

,

}

k i

k i

k

j

i j

i j

i j

i j

exp 


 
 


U

U
U

O

O   (22) 

 

For simplicity we shall refer to the neural network weight parameters as W  and to biases as b . The 

error function for the mixture density network defined by the sum of the negative logarithm of the 

likelihood functions for each member of the data set [4]:  
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1

), ,()( i

i

E E


W b W b
I

,  (23) 

where, 

 
1

( ) ( , ) | ( , ), ( ,, ln , ( , , ))
K

i k i i k i k i

k

E 


  W b d W b m μ d W b U d W bN   (24) 

is the error function of the i-th pair of the training data set Gdefined above. The goal of the training 

procedure of the network is to find ,W b  so that ,( )E W b  takes its minimum value. In order to 

minimize the above error function, we use the stochastic gradient descent (SGD) optimization scheme. 

The derivatives of the error function can be evaluated by employing the typical backpropagation 

procedure[6]. 

 

Recall that by the procedure described above, we have trained the neural network to provide as output 

the marginal distribution of the recovable parameters of an environment insonified by the acoustic 

waves of a known source given mesurements of the acoustic field at a specific location. Using this 

output we are able to estimate the probable values for these parameters and their confidence intervals.    

5 Test Case: Pekeris Environment 

As a first inversion example to validate the efficiency and the robustness of the new inversion scheme, 

we consider a typical shallow water Pekeris environment. The inverse problem corresponds to the 

recovery of the velocity bc  and of the density b  of the sea-bed which is modeled as half space when 

the measurements of the acoustic field due to a tomographic source (modeled with a Gaussian 

spectrum) are available at a single hydrophone. We assume that the measurements are made in the 

presence of additive white Gaussian noise, resulting to low Signal-to-Noise Ratio (SNR) 10dB. The 

constant environmental parameters as well as the actual values of the recoverable parameters appear in 

Table 1, along with the operational parameters of the sound source. 

 

We have considered all the parameters that control the inversion procedure via a trial and error 

technique. In this example, we have performed WPT using 4 level Daubechies 4 (db4) wavelet filters. 

For the second phase of our scheme, we have a cluster consisted by 5 HMMs, each of them having 

latent variables with 7 possible states. The emission distributions have been considered to be mixture 

of Gaussians with 2 components. Finally, in the last component of the model that illustrates the 

posterior information of the parameters, we have used a single layer MDN with 100 nodes and 

tanh based activation function. 

 

The training set G  is defined by generating a set of synthetic signals according to the unknown 

parameters ,b bc  . The substrate sound speed takes values in [1600 / ,1800 / ]m s m s  using a step of 

5 /m s  and the density of the substrate takes values in 
3 3[1200 / ,1400 / ]kg m kg m  using a step of 

35 /kg m  , thus creating a set of a total 1681  parameter-feature pairs ( ),m d . 

 

Figure 5 presents the conditional posterior joint probability distribution for the two unknown 

parameters in logarithmic scale. Table 2 illustrates the inversion results of the proposed procedure. As 

inversion result with the proposed procedure we have considered to be the parameters for which the 

posterior joint probability distribution gets its maximum value. 
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Table 1: Environmental, source and receiver parameters for the Pekeris environment. 

Parameters Actual Values 

Water Depth  ( )h m   200  

Source Depth  ( )sz m   100  

Receiver Depth  ( )Rz m   100  

Range  ( )r m   8000  

Central Frequency  ( )of Hz   130  

Bandwidth  ( )f Hz      90  

Water Density  
3( / )w kg m   1000  

Sound Speed in Water  ( / )wc m s   1500  

 

 

 

Figure 1: Conditional posterior joint probability distribution for the unknown parameters in 

logarithmic scale. 

 

For comparison reasons, we have also provided the corresponding results obtained applying the 

Statistical Characterization Scheme [7] after the hybrid denoising strategy that has been used by the 

authors in [8]. 

 

 

Table 2: Inversion results using the proposed procedure as well as the Statistical Characterization 

Scheme using the hybrid denoising strategy. 

Parameters Search space Actual values SCS(SD+CD) Proposed 

procedure 
3( / )b kg m  [1200, 1400]  1300.0  1342.1 1287.1 

( / )bc m s  [1600, 1800]  1700.0  1727.3  1703.5   
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6 Conclusions 

A new procedure for the estimation of the unknown parameters of a shallow water environments using 

measurements of the acoustic field is presented, based on a Hidden Markov Clustering scheme 

employed for the characterization of the acoustic signal in association with a neural network. Using a 

simple test case corresponding a Pekeris environment and synthetic data for the recovery of sea-bed 

parameters we have shown that the proposed procedure gives very good results even when the 

acoustic data are considered with high level Gaussian noise. Future work includes the study of a 

proper regularization techniques to avoid under-fitting and over-fitting problems occurring while 

training each probabilistic model. Finally, the validation of the proposed scheme requires the 

applicability study in multidimensional inversion cases and data from real experiments. 
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