

CONFORTO DE NAVIOS DO PONTO DE VISTA ACÚSTICO E DAS VIBRAÇÕES – A PERSPECTIVA DOS PASSAGEIROS

Teresa Canelas, Soraia Santos

{tc@iep.pt,ss@iep.pt)

Resumo

A questão do conforto a bordo de navios, tornou-se nestes últimos anos uma questão importante, uma vez que os passageiros avaliam a comodidade a bordo, baseando-se na qualidade do bem-estar percebido em diversos espaços das plataformas de um navio. Existem vários factores que os potenciais passageiros avaliam aquando da escolha de um barco, tais como as rotas, o luxo, entre outros. Contudo, o factor mais importante é o grau de conforto pessoal e segurança assegurado a bordo. Relativamente à questão de conforto, surgem logo os temas de ruído e vibrações existentes a bordo. Assim, importa quantificar o nível de ruído e vibrações a bordo de navios de passageiros no sentido de avaliar o grau de conforto de acordo com o nível de conforto COMF-NOISE 3 da Bureau Veritas (BV).

Palavras-chave: Conforto dos passageiros, níveis sonoros, vibrações.

Abstract

The comfort on board ships, became in recent years an important issue, since passengers evaluate the comfort on board, based on the quality of well-being perceived in various spaces of a ship platforms. Many factors evaluate the potential passenger when choosing a boat, such as routes, luxury, among others.

However, the most important factor is the degree of personal comfort and safety ensured onboard. On the question of comfort, there between the most important issues are noise and vibration on board. Thus, the design and the design of a vessel, must be taken into account aspects of noise and vibration insulation in order to provide the passenger low noise and vibration determining to maximize comfort on board.

Keywords: Passenger comfort, noise levels, vibrations

PACS no. 43.50-x, 46.40.-f

1 Introdução

A propagação do som em espaços fechados reveste-se de alguma importância por várias razões.

No caso específico, o conforto acústico de um Ferry de transporte de passageiros, é muito importante para a tripulação e passageiros. A questão do conforto a bordo de barcos de transporte de passageiros, tornou-se nestes últimos anos uma questão importante, uma vez que os passageiros avaliam a comodidade a bordo, baseando-se na qualidade do bem-estar percebido em diversos espaços das plataformas de um barco.

Existem vários factores que os potenciais passageiros avaliam aquando da escolha de um barco, tais como as rotas, o grau de luxúria, entre outros.

Contudo, o factor mais importante é o grau de conforto pessoal e segurança assegurado a bordo. Relativamente à questão de conforto, surgem logo os temas de ruído e vibrações existentes a bordo.

Assim, na concepção e design de um navio, deve-se ter em consideração os aspectos de isolamento ao ruído e vibrações de forma a fornecer ao passageiro baixos níveis de ruído e vibrações determinantes para maximizar o conforto a bordo. Actualmente, novas regras e normas sobre a qualidade do conforto a bordo dos navios estão a ser implementadas e outras em discussão com o objectivo de melhorar o conforto oferecidos a bordo e, ao mesmo tempo, responder às expectativas da indústria marítima, para obter informações coerentes com o ambiente de navios.

2 Objectivos

Medir e avaliar o nível sonoro emitido pelo Ferry de transporte de passageiros XPTO, em pontos já definidos pelo cliente de acordo com os critérios definidos pela BV. Comparar os resultados obtidos com o nível estabelecido, no caso concreto é de 66dB (A), para obtenção da notação de conforto, COMF-NOISE 3 e CONF VIB 3. da Bureau Veritas (BV).

3 Método utilizado

A metodologia utilizada para a realização deste projecto incluiu a realização de medições acústicas de acordo com a norma ISO 2923:1996 e a norma ISO 6954:2000, de acordo com as seguintes etapas:

- > "Calibração" do equipamento utilizado, antes e depois das medições;
- > Determinação do nível sonoro existente nos pontos de medição, bem como o nível de vibração.
- > Comparação com a notação de COMF-NOISE 3 e COMF-VIB 3

3.1 Condições de teste

Tabela 1- Ensaio de Vibração (Local: ao largo do Cabo da Roca)

Condições meteorológicas	5 de Março	
Vento	18 nós (Nor-Nordeste)	
Estado do Mar	Ondulação 2 m	
Profundidade da água	80 m	
Condições do Navio		
Antes da medição	Operação navegação normal (90% MCR)	
Após medição	Operação navegação normal (90% MCR)	

Tabela 2 - Ensaio de Ruído (Barra do Tejo)

Condições meteorológicas	5 de Março	
Vento	15 nós (Nor-nordeste)	
Estado do Mar	Ondulação 1 a 2 m	
Profundidade da água	40 m	
Condições do Navio		
Antes da medição	Operação navegação normal (90% MCR)	
Após medição	Operação navegação normal (90% MCR)	

As medições de ruído e vibrações foram efectuadas com 90% da potência máxima do motor principal que é o estado de serviço normal do navio.

3.2 Descrição das medições de ruído

No dia 05 de Março de 2011, as medições dos níveis de ruído foram efectuadas na entrada da barra ao largo do cabo da Roca e na Barra do Rio Tejo.

Os pontos de medição foram os indicados em baixo:

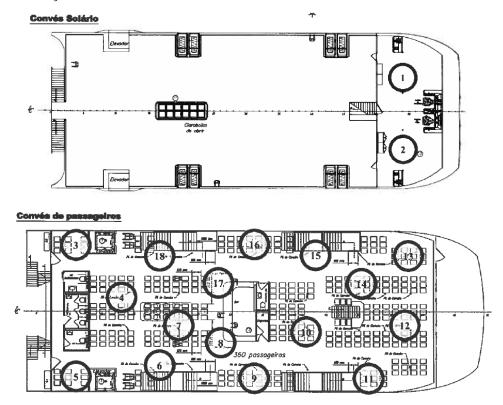


Figura 1 – identificação dos pontos de medição

4 Resultados obtidos

4.1 Resultados obtidos COMF-NOISE 3

Ponto medido nº	Localização	Tipo	Lp Meas. 90% MCR dB(A)	Limite dB(A) COMF-NOISE	Desvio
1	PS FR 54	Área de tripulação	60,6	66	-5,4
2	SB FR 54	Área de tripulação	58.0	66	-8,0
3	FR5 PS	Área de passageiros	72,1	66	6,1
4	FR13 PS	Área de passageiros	68,9	66	2,9
5	FR5 SB	Área de passageiros	70,4	66	4,4
6	FR19 SB	Área de passageiros	68,8	66	2,8
7	FR22 SB	Área de passageiros	66,8	66	0,8
8	FR28 SB	Área de passageiros	67,4	66	1,4
9	FR34 SB	Área de passageiros	64,1	66	-1,9
10	FR5 PS	Área de passageiros	63,1	66	-2,9
11	FR42 SB	Área de passageiros	62,8	66	-3,2
12	FR51 SB	Área de passageiros	63,1	66	-2,9
13	FR57 SB	Área de passageiros	63,9	66	-2,1
14	FR58 PS	Área de passageiros	64,2	66	-1,8
15	FR50 PS	Área de passageiros	65,7	66	-0,3
16	FR43 PS	Área de passageiros	64,6	66	-1,4
17	FR34 PS	Área de passageiros	67,5	66	1,5
18	FR19 PS	Área de passageiros	68,0	66	2,0

Tabela 3 - resultados do nível sonoro

Inaceitavel	>+5 dB(A)
Tolerância 5%	+ 5 dB(A)
Tolerância 25%	+3 dB(A)

Abaixo do limite	limit
Abaixo do limite	- 3 dB(A)
Abaixo do limite	< -5dB(A)

Tabela 4 Critério de aceitação COMF-NOISE 3

4.2 Resultados obtidos COMF-VIB 3

Ponto medido nº	Localização	Tipo	V Meas. 90% MCR mm/s	Limite dB(A) COMF-VIB 3	Desvio
1	PS FR54	Área de tripulação	3,6	4,5	-0,9
2	SB FR54	Área de tripulação	3,7	4,5	-0,8
3	FR5 PS	Área de passageiros	4,7	5	-0,3
4	FR13 PS	Área de passageiros	3,7	5	-1,3
5	FR5 SB	Área de passageiros	3,3	5	-1,7
6	FR19 SB	Área de passageiros	3,1	5	-1,9
7	FR22 SB	Área de passageiros	3,7	5	-1,3
8	FR28 SB	Área de passageiros	3,5	5	-1,5
9	FR34 SB	Área de passageiros	3,7	5	-1,3
10	FR5 PS	Área de passageiros	3,6	5	-1,4
11	FR42 SB	Área de passageiros	3,5	5	-1,5
12	FR51 SB	Área de passageiros	4,4	5	-0,6
13	FR57 SB	Área de passageiros	4,3	5	-0,7
14	FR58 PS	Área de passageiros	4,4	5	-0,6
15	FR50 PS	Área de passageiros	4,8	5	-0,2
16	FR43 PS	Área de passageiros	3,3	5	-1,7
17	FR34 PS	Área de passageiros	3,6	5	-1,4
18	FR19 PS	Área de passageiros	3,2	5	-1,8

Tabela 5 - resultados do nível vibrações

Inaceitavel	+ 2 mm/s
Tolerância 5%	+1 mm/s
Tolerância 25%	+ 0,3 mm/s

Abaixo do limite	limit
Abaixo do limite	-0,3 mm/s
Abaixo do limite	<-1 mm/s

Tabela 6 Critério de aceitação COMF-VIB 3

5 Conclusões

Os resultados obtidos permitem-nos concluir, que os pontos medidos, estão de acordo com a notação de COM-VIB 3 da Bureau Veritas (BV rules 2007 Edition). No que respeita à notação COM-NOISE 3 não são cumpridos os requisitos mínimos aplicáveis uma vez que no ponto 3 (FR5 PS) o nível de ruído está mais de 6 dB(A) acima do valor limite e existem 6 pontos na margem de 25% de tolerância.

6 Estudos Futuros

Alargar o estudo a outros tipos de barco, bem como efectuar estudos do ponto de vista do isolamento acústico entre os diversos compartimentos existentes num barco de transporte de passageiros (cruzeiros)

7 Agradecimentos

Ao Instituto Electrotécnico Português pelo tempo e recursos disponibilizados para a realização deste estudo.

8 Referências

- [1] M.J. Griffin.; Handbook of Human Vibration, Elservier' Academic Press 2004, 988 páginas.
- [2] ISO 2631-1:1997
- [3] ISO 6954:2000
- [4] Rules for the Classification of steel Ships, Bureau Veritas, Abril 2007.