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Abstract 
In this paper, a computational model based in the Method of Fundamental Solutions (MFS) is 
presented for the study of acoustic horns with axisymmetric configuration. The model is based in the 
definition of two subdomains, connected by an interface in which continuity boundary conditions are 
imposed. It allows the calculation of the acoustic response (in terms of acoustic pressure) of a horn 
attached to an infinite, plane rigid screen. These conditions are similar to the laboratorial conditions 
used for the experimental characterization of these devices in terms, for instance, of their directivity. 
Solutions calculated by the proposed method are compared with those computed using a finite-element 
approach; additionally, the computed directivity is compared with experimental results, obtained in the 
laboratory. 
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1 Introduction 

The fundamentals of acoustic horns were widely developed by Euler, Lord Rayleigh and Webster. 
Webster was the first to introduce the concepts of specific acoustic impedance and the analogous 
acoustic impedance, both widely used concepts in acoustic analysis [1]. This author established what 
is known as Webster’s horn equation which, in the strictest sense, is only applicable to the three 
following waveguide structures: the plane wave tube, and the conical and cylindrical horns. Based on 
the works carried out by Webster (1919) and Salmon (1946), the audio engineering community has 
designed different types of horns analyzing their cut-off frequency and proper size. As an example, D. 
Keele [2] has developed a frequency dependent constant directivity device, achieved by joining an 
exponential or hyperbolic throat segment, for driver loading, with two conical mouth segments, for 
directivity control. 
Due to the need to design horn systems capable of improved efficiency and directional characteristics, 
different numerical methods have been used to simulate and optimize different types of configurations. 
Among those methodologies, the three most widely employed numerical techniques are the Boundary 
Element Method (BEM), the Finite Difference Method (FDM) and the Finite Element Method (FEM). 
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Morita et al. [3] and Beltran [4] used the Finite Element Analysis (FEA) to model axisymmetric horns. 
Within the analysis, Morita et al. used a radiation boundary condition, corresponding to an analytical 
integral equation defined over the mouth of the horn, that assumes that the horn is mounted in an 
infinite baffle. This approach reduced the numerical complexity of the system, taking into account the 
effect of the variation of the acoustic particle velocity across the mouth of the horn being modelled. 
Beltran used a non-reflective boundary condition on a spherical surface around the horn’s mouth, only 
requiring meshing the outside region in front of the horn. He also modeled the mechano-acoustic 
interaction of the compression driver diaphragm coupled to the horn throat, for different material 
properties, showing the usefulness and advantages of a FEA approach to the design of the complete 
radiating system. 
Hodgson and Underwood [5] used a BEM scheme to compute the throat impedance and the far field 
pressure, demonstrating good agreement with experimental data; they also analyzed the correlation 
between the impedance peaks and the far field pressure response peaks. Noreland et al. [6] and 
Udawalpola et al. [7] applied a gradient-based optimization algorithm to improve the transmission 
properties of a variable mouth acoustic horn, by computing the reflection spectra using FEM and BEM 
methodologies. These authors remarked the advantages of using a BEM model, since it is not 
necessary to remesh or modify the mesh volumes within the optimization processes. On the other 
hand, Makarski [8] proposed a computational tool based on the BEM and the Fundamental Mode 
decomposition, with its focus on the professional development of horn loudspeakers, in which the 
electroacoustic transducer and the horn are treated separately. 
Morgans [9] describes an optimization method, based on BEM and FEM, for the design of constant 
beamwidth horn loaded loudspeakers. Using the Transmission Matrix Method, Lampton [10] 
established a numerical approach, which consists of discretizing complex geometry of electroacoustic 
systems using small cascade-elements network. Each acoustic component can be described by a pair 
of pressure and volume velocity ports at the input and output of the element, being these related by a 
2x2 matrix. Adopting the Transmission Matrix approach, McLean et al. [11] studied the throat 
impedance characteristics of constant directivity horns, showing a good agreement between 
experimental data and computed results. 
In this work, the authors aim to present a very efficient and accurate numerical model for the solution 
of problems related with acoustic horn analysis. The proposed approach is based on the use of the 
Method of Fundamental Solutions (MFS), adopting a sub-region technique to simulate the behavior of 
a horn mounted on a rigid screen. The method has some advantages when compared with other 
approaches, specially concerning its computational efficiency and accuracy. 
This paper is organized as follows: first, the mathematical formulation of the governing equations in 
sound propagation is briefly outlined, indicating the fundamental solutions for pressure and particle 
velocity (both for the 2D, 3D and axisymmetric cases), and formulating the Method of Fundamental 
Solutions (MFS) in the frequency domain; then, a MFS model is described for the analysis of a 
radiating acoustic horn embedded in a rigid infinite screen; finally, a comparison of the sound 
directivity computed using the MFS and the FEM for an axisymmetric horn configuration is presented, 
together with an experimental validation of the computed results. 

2 Mathematical formulation 

2.1  Governing equations 

 
The propagation of sound within a homogeneous acoustic space can be mathematically represented in 
the frequency domain by the Helmholtz differential equation, 
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is the acoustic pressure, k cω= the wave number, 2ω π= f the angular frequency,  f  the frequency 
and c the sound propagation velocity within the acoustic medium. 
For the 3D case, assuming a point source placed within the propagation domain, at point x0 with 
coordinates 0 0 0( , , )x y z , it is possible to establish fundamental solutions G for the sound pressure and 

H for the particle velocity at a point x with coordinates ( , , )x y z , which can be written respectively as 
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A special case can be considered when an axisymmetric problem is analyzed, for which it is also 
possible to establish a fundamental solution. For that case, assuming that the source is also 
axisymmetric (e.g. a circular ring) and aligned with the x axis, the required fundamental solutions 
become  
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Equations (4) and (5) correspond, in practice, to the integration of a 3D source, given by equations (2) 
and (3), along the circle centred on the x axis and passing through 0 0( , , 0)x y , being 

2 2 2
0 0 0( ) 2 cos( ) ( )r y y y y x xθ θ= + − + − . 

Therefore, it becomes obvious that if 0 0( , , 0)x y  and ( , ,0)x y  coincide, then (0) 0r = , and hence a 

singularity occurs in the integrands of equations (4) and (5). However, if the source and receiver points 
are apart, then those integrals become non-singular, and can be easily approximated using standard 
numerical integration techniques. 
Similarly, the concept of image-sources can be applied to 3D and axisymmetric problems. Since the 
present paper deals mostly with the latter, it is important to define the corresponding solution. 
Considering, for that case, a rigid vertical plane located at x=0, the fundamental solution can be 
written as 

 
12 -i ( )-i ( )

0
10

e e
( , , ) d

( ) ( )

krkr
Axi

symG k
r r

π θθ

θ
θ θ

 
= + 

 
∫x x  (6) 

 

where 2 2 2
1 0 0 0( ) 2 cos( ) ( )r y y y y x xθ θ= + − + +

.
  

 



 Luís Godinho, Jaime Ramis, Paulo Amado-Mendes, William Cardenas, J. Carbajo  

 
 

4

2.2 The MFS for the analysis of an emitting horn embedded in a rigid infinite screen 

To apply the MFS to the analysis of an emitting horn, embedded within a rigid screen of infinite 
extent, consider the configuration schematically represented in Figure 1a. In that figure, at x=L a rigid 
surface is considered, simulating an infinite rigid screen. To analyze this system using the MFS, a 
model with two sub-domains is considered, as described in Figure 1b, in which sub-domain 1Ω  

incorporates the geometry of the horn, while sub-domain 2Ω  simulates the semi-infinite space and the 

rigid screen. The common interface, along which continuity of pressure and particle velocity must be 
imposed, is designated as 

cΓ , while 1Γ  and 
vΓ correspond to surfaces along which the normal 

velocity is prescribed. To simulate the horn problem, null velocities are prescribed in 1Γ , while a unit 

velocity is prescribed in the vibrating surface  
vΓ . 
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a)      b) 

Figure 1 – a) Schematic representation of the problem geometry; b) Distribution of virtual 
sources and collocation points in the MFS model with two sub-domains. 

 
If an axisymmetric configuration is considered, the corresponding fundamental solutions to be used 
are those of equations (4) and (6), and the pressure field is then defined by 
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3 Application example 

As an application example, the optimized axisymmetric acoustic horn design proposed in the works of 
Noreland et al. [6] and Udawalpola et al. [7] was considered. The proposed shape of the horn was 
obtained numerically by these authors with the aim of having optimal radiation efficiency at 
frequencies in the range 1.6–9.05 kHz, while satisfying a convexity constraint on the flare. The 
geometry of this horn is schematically displayed in Figure 2, exhibiting a throat radius of 0.0193 m, a 
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mouth radius of 0.1500 m, and a length of 0.1615 m (note the curvature at the edges of the mouth of 
the horn). 
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Figure 2 – Geometry of the optimized axisymmetric horn proposed by Noreland et al. [6]. 

 
The horn was modelled using the proposed axisymmetric MFS model, making use of a total of 113 
boundary points to discretize its rigid surface. It is worth remarking that the optimized horn exhibits a 
very subtle geometry, thus requiring a larger number of points to correctly define its shape; indeed, an 
incorrect definition of this shape results in relevant changes in the computed results. Beyond the 
mouth of the horn, an infinite rigid screen is considered and incorporated in the model by means of the 
virtual sources technique. Figure 3 depicts the directivity results computed for frequencies of 500 Hz, 
2000 Hz and 8000 Hz, using both the MFS model and a finite element commercial software. For the 
latter, the field was discretized making use of a fine mesh, with at least 12 elements per wavelength for 
a frequency of 8 kHz.  As shown in the directivity plots, an excellent agreement exists between both 
solutions, although with a lower computational effort in the case of the MFS. It can be noted, in that 
plot, that the optimized horn exhibits regular curves, without any observable oscillations along the 
angular range.  
To validate the numerical results shown in Figure 3, the directivity of the horn was measured in 
laboratory, mounting the horn in a large rigid screen, simulating the theoretical infinite rigid surface of 
the model. The directivity was measured in anechoic conditions, at a distance of 1m from the mouth of 
the horn, as described in [12]. In order to obtain the directivity pattern, sound pressure level was 
registered using a measurement system, and performing sound pressure level evaluations at angular 
intervals of 5º. In Figure 4a, a photography of the horn tested in the laboratory is depicted. Figure 4b 
exhibits a comparison of results for frequencies of 1 kHz, 4 kHz, 8 kHz and 10 kHz. The results 
illustrated in that figure clearly allow concluding that the agreement between numerical results and 
experimental data is good, although existing some differences between both sets. For the lower 
frequencies, of 1 kHz and 4 kHz, the trend of the numerical and experimental results is similar, but 
differences of around 1 dB can be seen even at receivers placed at low angles. For higher frequencies, 
a good agreement can be observed for receivers placed at angles up to 60º, without significant 
deviations between the experimental and numerical result. It is only beyond this angle, for which the 
decay is over 20 dB, that significant differences (above 1 dB) are registered; these larger differences 
can be attributed to limitations of the experimental setup used for the directivity measurements. 
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Figure 3 – Comparison of directivity results calculated using FEM and using the proposed 

MFS model. 
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a)      b) 

Figure 4 – Validation of the numerical model using laboratory measurements: a) horn tested in the 
laboratory; b) measured and computed directivity results. 
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4 Conclusions 

In the present paper the Method of Fundamental Solutions was used to model the behavior of acoustic 
horns with axisymmetric geometry. The developed model was based on the use of two sub-regions, 
one of them containing the rigid horn, and the other corresponding to a semi-infinite space. The joint 
use of these two sub-regions, connected by imposing the necessary continuity of acoustic pressure and 
normal particle velocities, allows simulating the case of an acoustic horn embedded within a rigid 
screen, a scenario that is frequent in laboratory analysis of such devices.  
The model was here tested to analyze the behaviour of an optimized non-trivial horn geometry in 
terms of directivity at different frequencies. For the tested case, an excellent agreement with a 
commercial finite element software was observed. Comparison with experimental results obtained for 
the same geometry also revealed a very good agreement, indicating that the method performs well and 
can be a valuable analysis tool.  
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