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ABSTRACT 

HRTF (Head Related Transfer Functions) techniques are nowadays used in applications like 3D 
audio, immersive teleconferencing systems, gaming, etc. They allow helping in creating a more 
real experience, locating the sounds at the desired positions in space. This paper, presents an 
efficient parallel implementation of HRTF sets using GPU (Graphic Processing Units), based on 
a low-order parametric modelling technique of the HRTF developed and adapted by the authors. 
The proposed approach allows obtaining a low computational cost and low database size HRTF 
sets, together with the acceleration obtained with the parallel implementation with GPUs. Hence, 
it is possible to achieve an accurate HRTF model that could be used in different environments 
with a great number of sound sources in real time. 
 
 
 

RESUMEN 

El uso de las funciones de transferencia de la cabeza (HRTF, Head Related Transfer Functions) 
es hoy en día habitual en múltiples aplicaciones como audio 3D, sistemas de teleconferencia 
inmersiva, videojuegos, etc. Mediante estas técnicas, se obtiene una experiencia acústica más 
real, permitiendo localizar los sonidos en el espacio. Este artículo presenta una implementación 
paralela eficiente de HRTFs empleando GPU (Graphic Processing Units), basándose en una 
evolución de modelos paramétricos de las HRTFs desarrollados y adaptados por los autores. La 
propuesta permite obtener una implementación de bajo coste computacional y de un menor 
tamaño de la base de datos de las HRTF, junto a la aceleración del cálculo en paralelo con GPUs. 
Los resultados demuestran que se pueden obtener modelos realistas de HRTFs que pueden ser 
usados en distintas aplicaciones, con un gran número de fuentes de sonido en tiempo real. 
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1. INTRODUCTION 
 

Nowadays, Head-related transfer functions (HRTFs) are used in different applications where 
realistic audio is needed. HRTF capture all the effects that a free-field sound wave suffers from 
its source to the listener’s ear canal [1].  This includes the acoustic path, the torso and head 
reflection and diffraction effects, and the outer ear. This information is used by the brain to localize 
the source in the space, comparing the responses from both ears. The ITD (Inter-aural Time 
Difference), ILD (Inter-aural Level Difference), shading effect on the frequency response, and 
reflection patterns due to the torso an external ear are compared [2], [3], as seen at Fig. 1. 
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Fig.  1 – HRTFs and HRIR (Head Related Impulse Response) effects 
 
HRTFs are used in immersive sound applications like stereo enhancement and spatial sound 
reproduction, virtual reality, auralization, videoconference systems, and videogames [4]. In all of 
these real-time applications, achieving low-order models of the HRTFs is desirable for reducing 
the computational cost, while trying to keep the perceptual characteristics of the original HRTF. 
 
Different solutions have been proposed for HRTF modeling. Some make a computational 
approach designing analytical models of the head and simulate the wave propagation and 
diffraction effects. Others have an empirical approach [3], using digital filters to model the HRTF 
behavior, as it will be done here. The use of Finite Impulse Response (FIR) filters is 
straightforward for HRTF modeling by doing the proper time windowing and preprocessing of the 
HRIR [3], where filter orders close to 200 have been suggested for acceptable results. Infinite 
Impulse Response (IIR) filters have been also used [3], requiring, in general, lower orders than 
FIR. Different filter design methods have been used like Prony’s method and Yule-Walk, common 
pole and zero modeling, balanced model truncation, and genetic algorithms [5-8].  
 
Recently, one of the authors proposed at [9] an IIR parametric model implemented directly as a 
SOS (Second Order Section) chain, where the SOS are forced to be a second order low-shelving 
and peak filters, all of them defined by its parameters (frequency, gain, and quality factor Q) [10], 
[11]. The use of parametric methods allows describing the HRTFs with a limited set of parameters, 
instead of the whole coefficient set (FIR and IIR), reducing the amount of information needed to 
model the HRTFs, and hence the database size. Other benefit of using a parametric model as in 
[9] is the simplification of the interpolation procedure of HRTFs responses at positions where they 
have not been modeled and measured. With a simple interpolation of the parameter’s value of 
the SOS, an interpolated HRTF could be obtained using the parameter values of the neighbor 
modeled positions. This approach to the interpolation problem is simpler and gives satisfactory 
results with a much lower computational cost demand as traditional and complex cross-fading 
techniques in time [12] or frequency domain [13] solutions. 
 
During the last years, the use of GPU (Graphic Processing Units) for accelerating different 
calculus problems non-related with graphics has been extended and adopted in different fields 
due to its high computational capacity and internal parallelism (with hundreds or even thousands 
individual computational units). Actually, GPUs are inside any computer, tablet or smart-phone, 
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being a computational resource available for the developers and programmers not only for graphic 
purposes. In audio, and particularly, in HRTF modeling, some of the authors have been working 
on massive multichannel FIR convolvers [14] and on IIR parallel filter banks [15], related with the 
work proposed here. 
  
This works is focused on getting the benefits of the internal parallelism of GPUs for the parametric 
modelling of HRTFs. For that, the original parametric model of [9] that is formed as a SOS chain, 
must be changed and transformed to a parallel one in order to be able to parallelize its calculus. 
The paper is organized as follows. At section 2, a brief introduction of the original parametric 
model of HRTFs [9] is carried out. The conversion from series to parallel is covered at section 3, 
with the details of the GPU implementation strategy and results in section 4. Finally, the 
conclusions are summarized at section 5. 
 
 

2. PARAMETRIC SOS-CHAIN MODEL  
 
As commented, at [9] an IIR parametric model of HRTFs was proposed and evaluated by one of 
the authors based on prior work carried out for loudspeaker equalization and crossover design 
[16]. Here a brief resume will be done, refer to [9] for details. Figure 2 shows the parametric model. 
It is formed by an initial delay line that models the time difference between the responses of left 
and right ears. The delay could be integer, or fractional for a more precise modeling [17].  Later, 
a series of SOS formed by a low-shelving filter SHL1, and peak filters PKi, all of them defined by 
its parameters (frequency fi, gain gi, and Q qi). This is a common approach, splitting the model in 
a pure delay line for the ITD, and a minimum-phase IIR or FIR filter. 
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Fig.  2 – HRTFs parametric model as a SOS chain 
 

 
The model is designed iteratively looking for the best set of parameters (fi, gi, qi) of each SOS that 
minimizes the error areas between the HRTF to model and the response of the modeling filter. 
Figure 3a shows the error areas (A1 to A4), and the response with only the first two SOS. SHL1 
models the low frequency behavior of the HRTFs, and the PKi the peaks and valleys [10], [11]. 
The SOS are designed one by one, trying to mimic the remaining biggest error area Ai. The 
parameters are found using a combination of a direct search method for getting the initial values 
of the parameters, and a second stage that performs a heuristic optimization of them. The cost 
function to minimize works in a double logarithmic domain, in frequency working with a discrete 
log-spaced frequency axis, and in magnitude using the absolute value of the magnitude in 
decibels. When the whole SOS are designed, a posterior post-optimization process is carried out, 
re-optimizing the parameter’s values of several contiguous in frequency SOS that improves the 
interaction among them. Figure 3b shows the modeling filter with 12 SOS that matches the original 
HRTF using only the information of 36 parameters, instead of the 200 coefficient length of the 
original HRTF used [18]. 
 
Once modeled one HRTF position, i.e. at 0º, instead of modelling again the next position (5º) from 
the scratch, it is designed evolving the parameters of the already modeled position using the post-
optimization process [9]. Normally, peaks and valleys of the responses change a little from one 
position to the next one. Figure 3c shows the complete set of HRTFs for a specific elevation with 
responses separated 10 dB for clarity. 
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Fig.  3, from [9] – (a) Error areas, and modeling with 2 SOS. 

(b) – Model obtained with a chain of 12 SOS. 
(c) - Set of HRTFs and its models. Evolution of the frequencies 

 
The vertical lines display the evolution of the frequencies of the SOS, which follow the frequencies 
of peaks and valleys of the responses. This approach let a simple interpolation procedure of 
HRTFs just doing an interpolation of the parameters, allowing to decrease the number of modeled 
positions, and achieving a reduction of one order of magnitude in the complete database size.  
 
 
 

3. CONVERSION TO A PARALLEL SOS MODEL  
 
The previous parametric HRTF model performed with the SOS chain of Figure 2, gives 
satisfactory results, but it is not well suited to be implemented in a GPU architecture, where a 
parallel implementation is preferred, since it allows splitting the computation among the multiple 
GPU cores [15]. 
 
The simplest (and equivalent filter implementation) is performing a series to parallel conversion 
by classical partial-fraction-expansion [19]. Once designed the model as a series of N SOS [9] 
defined by its coefficients b0i, b1i, b2i, a1i and a2i , then a transformation to parallel is done finding 
the new coefficients K and b’0i, b’1i, a’1i and a’2i for the new parallel N SOS implementation of 
Figure 4. The ITD block with the delay line remains equal. By this way, now it is possible to do 
the calculus of each SOS-i in parallel, due to now, there is no data dependency between the 
different SOS, and finally do the global addition of the output of the SOS. This series-to-parallel 
conversion can be carried out offline, generating the new parallel HRTF data-base. 
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Fig.  4 – Parallel implementation by partial-fraction-expansion. 

 
 
As an example, let’s perform a model [9] with a chain of 12 SOS, shown at Figure 5a in blue with 
the thick line. Obtaining the partial-fraction-expansion, the individual responses of each SOS is 
displayed with the black thin lines. The complex addition of the responses, rebuild exactly the 
original chain model as expected. Now the phase between the SOS is relevant, as opposite with 
the series implementation. 
 

 
Fig.  5 – Partial-fraction-expansion with 12 SOS at two consecutive positions. 

 
Figure 5b shows the HRTF model, again with 12 SOS, but at the next angle (before at 0º, now at 
5º), and the individual responses of the partial-fraction-expansion. Some of the SOS responses 
are quite similar, but other start having differences of several decibels. This could difficult the 
interpolation procedure of [9]. In this case, it will be better to obtain the interpolated parametric 
SOS chain model, and then the new equivalent parallel one. Another approach is parameterizing 
the angles and radios of the poles, and the radios and gains of the zeros, and then interpolate 
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them. Anyway, an equivalent parallel filter that matches the original one is obtained, that is better 
suited for its implementation in GPU architectures. 
 
There are other options for creating a parallel filter to model the HRTFs, like the previous work on 
parallel filter banks by Bank with success [15], [20], [21] but without the parametric approach. 
 
 

4. GPU IMPLEMENTATION 
 
Compute Unified Device Architecture (CUDA) is a software programming model that allows the 
use of GPUs for applications beyond graphics rendering. GPUs have the potential of highly 
parallel data processing. The recent Nvidia GPU Kepler architecture [22] is composed of multiple 
Stream Multiprocessor (SMX), where each SMX consists of 192 pipelined cores per SMX. A GPU 
device has a large amount of off-chip device memory (global-memory) and a limited amount of 
fast on-chip memory (shared-memory).  
 
The code to be executed on the GPU concurrently by multiple elementary processes, called 
threads, is written on a kernel function. The threads are grouped in Thread Blocks (TB). Before 
launching the GPU code, the programmer must define the number of TBs and its size (i.e., the 
number of threads). This is important, since only the threads that belong to the same TB can 
share data through shared-memory. More details can be found in [22]. 
 
If we want to render N sound sources in a binaural system, we need to compute 2N IIR filters 
concurrently, for the left and right channel. For performance and quality reasons, each HRTF filter 
will be designed with 16 SOS. Thus, we launch N TBs to run the CUDA kernel. Each TB is 
composed of 32 threads where each thread computes the parallel section SOS-i shown in Fig 6. 
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Fig.  6 – Section that is processed by one thread of the GPU. 
 
The first 16 threads of the TB are devoted to compute the 16 sections that correspond to the left 
channel, whereas the second 16 threads of the TB compute the 16 sections that correspond to 
the right channel. 
 
The TB that is used in this implementation is composed of two-dimensional threads (threadIdx.x, 

threadIdx.y), where threadIdx.x ∈[0 15], and threadIdx.y ∈{0;1}. Since there is a delay between 

samples that are processed for the left channel and the right channel, the variable x0 in the GPU 
implementation is defined as: 

x0 = x0 – threadIdx.y*ITD 
 
Thus, each TB computes two IIR filters (left and right). A thread inside the TB computes one 
section and stores its result in the shared-memory. Then, a synchronization barrier is set in order 
to wait that all the threads of the TB have finished. After that, the reduction algorithm described 
by Harris [23] is implemented. It consists in summing up in a parallel way all the values of a vector 
that is stored in the shared-memory. Finally, the coefficient b’1,1 (K) that are shown in Fig. 4 is 
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summed. Fig. 7 illustrates the described operations for one input sound source. It is important to 
highlight that the N TBs of the implementation are launched concurrently and executed in parallel.  
 

 
Fig.  7 – GPU-based Parallel Implementation of one IIR filter processing. 

 
We tested our GPU-based implementation on an Nvidia Tesla K20Xm that is based on the Kepler 
architecture and is composed of 14 SMXs. We used a standard audio card at the laboratory. The 
audio card uses the ASIO (Audio Stream Input/Output) driver to communicate with the CPU and 
provides 8, 16, 32 and 64 samples per channel every 0.18 ms, 0.36 ms, 0.72 ms and 1.45 ms, 
respectively (sample frequency fs=44100 Hz). Figure 8 shows the maximum number of sound 
sources that can be computed under real-time conditions. 
 
 

 
 

Fig.  8 – Maximum number of sound sources computed under real-time conditions 
 

The proposed GPU-based implementation can run 690 sound sources in real time with 0.18 ms 
latency. In case latency is 1.45 ms, then 1108 sources can be rendered in real time. With latencies 
of 0.72 and 0.36, the system is able to manage 910 and 1005 sound sources respectively.  
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5. CONCLUSIONS 
 
An efficient implementation in GPUs of parametric HRTFs models has been presented and 
validated. Starting from previous work of the authors in HRTFs modeling with SOS chains, an 
equivalent parallel model has been developed in order to be adapted to the parallel nature of 
GPUs. The implemented solution allows to decrease the computational cost for using HRTF 
techniques moving the calculus from the traditional CPU or DSP to the GPU, permitting high 
accuracy HRTF models with a great number of moving sound sources in real time. 
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