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Abstract 

Many musicians agree that extensive playing improves the sound quality of stringed instruments, such 
as violins and guitars. To find a scientific evidence of this effect, we consider applying a long-term 
vibration treatment to a test guitar, and here address the issue of developing a mechanical set-up using 
an electrodynamic shaker, in order to impart natural-playing vibrations to the instrument. From acceleration 
signals measured on the instrument during normal playing conditions, we solve the inverse problem of 
computing the drive signal to be sent to the shaker in order to reproduce the soundboard motion at the 
bridge. The identification procedure was implemented numerically, and then validated experimentally, 
providing useful voltage control signals and resulting in realiable replications of the prescribed motions. 
The proposed approach could benefit to other studies of stringed instruments, specifically when properly 
controlled playing-test conditions are required. 

1 Introduction 

The influence of long-term playing on the tone quality of string instruments has long been debated 
by musicians [1]. If the prevalent belief is that guitars and violins improve with regular playing, the 
phenomenon has not been clearly established in the scientific studies available so far. The question has 
however frequently been investigated from different points of view, vibrating instruments and wood samples, 
considering different mechanical excitations, and as final evaluation, using objective and subjective tests 
[2, 3, 4, 5, 6, 7]. If the phenomenon surely well depends on various factors, a likely justification could be that 
intense vibrations cause dynamical responses different from the original ones, possibly more satisfactory. It 
cannot however be ruled out that sufficiently large amplitude vibrations may also alter - reversibly or not - 



the mechanical properties of the wood material, which is an organic, non-homogeneous and anisotropic
material, particularly sensitive to several factors such as temperature and humidity, and for which any
mechanical change affects the instrument response.
In search of scientific evidence on the effect of playing, we are currently designing a long-term experiment
which aims at providing quantitative data on the phenomenon, specifically by tracking the modal parameters
of a test guitar subjected to a vibration treatment. Rather than go through tests involving musicians, we
consider developing a method to artificially vibrate the guitar according to natural playing conditions, using
an electrodynamic shaker. In this work, we first address the inverse problem of computing the drive signal
to be sent to the shaker in order to produce body accelerations that match with measurements acquired
during playing and then, validate the method experimentally. An inherent difficulty of the problem is the
inversion of the system transfer function, which can lead to very unstable inverse solutions [8]. To overcome
ill-conditioning, we apply a regularization technique which is both simple to implement in the frequency
domain and quite effective [9, 10]. The experimental implementation of the reproduction strategy shows that
accurate signals of the body response at the bridge location can be achieved. Also, by simple replay, the
technique offers a high degree of repeatability, and consequently, seems particularly adequate to be used
in other studies of stringed instruments requiring properly controlled playing conditions.
In this paper, the first stages of this research project are presented, including the experimental modal
analysis of the test guitar, the formulation of the inverse problem and its regularization and finally, the
experimental implementation of the technique, for which original and reproduced acceleration signals are
compared.

2 Experimental modal identification of the test guitar

The test guitar is a hand-crafted 8-string classical guitar, with a spruce soundboard, which has not been
played for almost 20 years. For the measurement, the guitar was suspended in a vertical position by means
of rubber bands fixed at the head, with all the strings damped but tuned to the notes C5, D5, E4, A4, D3, G3,
B2, E2 (see Figure 1). Frequency response functions were measured by impact testing and estimates of the
modal parameters, i.e modal frequencies, modal damping values and mode shapes, were extracted by a
sophisticated modal identification algorithm. Light-weight accelerometers (B&K model 4375) were attached
to the instrument body by means of a thin film of mounting wax to measure the vibratory guitar motion,
two on the soundboard and one on the backplate. For the excitation, a miniature instrumented impact
hammer (PCB model 086E80) was used. A mesh of 178 test locations was defined on the soundboard, and
impacts were performed at all the point locations. Both inputs and response signals were recorded using a
SigLab/Spectral Dynamics, at a sample rate of 5120 Hz.

Figure 1: Set-up for modal analysis of the guitar.
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Figure 2: Measured (green) and reconstructed (red)
impulse responses and transfer functions at the
bridge. Dotted lines stands for the identified modes.



The modal identification was based on processing the force and acceleration time-domain signals.
Computed the impulse responses in terms of velocity and force, the modal parameters were extracted using
a parametric multi-degree-of-freedom technique called the Eigensystem Realization Algorithm (ERA) [12],
which can support several reference channels. Based upon concepts of control theory, the idea behind ERA
is to reconstruct the system responses from the experimental data using the minimum order of the state
space formulation, which is obtained by SVD filtering of the zero-order Hankel matrix, built from the system
outputs. In this work, the modal identification was carried out by considering three reference channels and
the entire set of measured impulse responses. We used the first 0.4s of each impulse response, and limited
our analysis within the frequency range 0-500 Hz. The model reduction was obtained by the analysis of a
stabilization diagram built by repeating the identification process with an increasing number of modes each
time. To show the reliability of the modal extraction technique, a typical impulse response and corresponding
transfer function of the reduced-order model (using 8 modes) are compared with the measurement in Figure
2. Finally, Figure 3 shows the identified principal low-order modes of the guitar, with the values for the modal
frequencies and modal damping values, together with the mode shapes. Despite the slight asymmetry in the
instrument design, the body shapes, at least in the low-frequency range, are very similar to those described
in previous investigations [14, 15], with modes involving motion either on the soundboard (modes 3 and 7)
or the back plate (mode 4), or the coupled motion of the plates and the air inside the cavity (modes 1, 2, 5,
6 and 8).
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Figure 3: Modal frequencies, modal damping value and mode shape for the principal lower-order modes.

3 Live playing recording

Several short musical excerpts were played by one of the authors (P.V.C.) on the test instrument, and the
vibratory responses were recorded by using a small accelerometer (B&K model 4375), mounted close to
the bridge (see Figure 4a). Objective of the test was to provide some reference acceleration signals to be
reproduced by the vibrating device, and built a data base for providing the instrument a vibration process
having the same effect as normal playing. The musical excerpts were therefore intended to cover the
frequency range and natural dynamics of the guitar. It included excerpts of the classical guitar repertoire
such as the opening of Asturias by Issac Albéniz and Grand Overture Op. 61 by Mauro Giuliani, as well as
scales and other melodies played by plucking low-pitched to high-pitched strings, for different dynamic levels
and including a variety of playing techniques (apoyado, tirando, vibrato, harmonics, etc. . . ). Signals were
recorded through the SigLab/Spectral Dynamics acquisition board, with a sampling frequency fs=51200
Hz. Figure 4b shows a representative acceleration waveform of one recording, with its corresponding auto-
spectrum.
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Figure 4: Live playing recording (a) and representative acceleration signal measured at the bridge (b).

4 Identification problem formulation and inverse problem
regularization

An important issue when designing any vibration test is the choice of the excitation to be used to create
a response in the test structure. This can include controlled force input as in laboratory modal test, or
environmental or operational inputs as in seismic assessment of structures or transportation vibration. For
simulating long-term playing artificially, a similar approach to vibration control is sought, in a way aiming at
recreating the vibration undergone by the instrument from data recorded during playing. Technically, this
requires to solve an inverse problem, where the specific issue is to compute the input signal of a shaker in
order to produce an output that match a pre-recorded time-history response. The control problem is thus a
problem of response deconvolution, when working in the time domain, or response inversion, by working in
the frequency domain.
From a Fourier perspective, the problem of inversion is more pratical and remarkably straightforward. The
basic identification procedure of the input voltage signal of the shaker v(t) from the acceleration measured
at the bridge ẍ(t) can be summarized as:

ẍ(t)
FFT
=⇒ Ẍ(ω) = H(ω)V (ω)⇐⇒ V (ω) =

Ẍ(ω)

H(ω)

FFT−1

=⇒ v(t) (1)

where H(ω) is the electromechanical transfer function of the global system, including the guitar. In practice,
care must be taken when computing the inverse of the system transfer function, because H(ω) may include
near-zero values at some frequencies. Such singularities make the inverse solution very unstable, and
usually demand the use of regularization techniques for achieving useful solutions [8, 11].
In previous works concerned with the identification of nonlinear interaction forces [9, 10], the authors
explored several regularization techniques, including Tikhonov inspired methods and SVD filtering. In the
present paper, a simple and effective regularization of the transfer function is performed, using the so-called
water level regularization [13]. The basic idea is to employ a filtered version of the transfer function before
computing the inversion in Eq. (1). The so-called regularized transfer function is then defined as:

HREG(ω) =

{
H(ω), if |H(ω)| > ε

εH(ω)/|H(ω)|, if |H(ω)| ≤ ε
(2)

where ε is the regularization parameter which acts as a lower boundary beyond which filtering of the
inverse problem is enabled. To ensure stability and recover useful solutions, selecting an appropriate ε
is of fundamental importance. To that end, several methods have been proposed, amongst others the



widely used L-curve method [16], which seeks to balance the trade-off between fitting the data and the
solution stability. Asssuming a set of values for ε and plotting on a log-log scale the norm of the residual
||H(ω)V ?(ω) − Ẍ(ω)|| versus the norm of the solution ||V ?(ω)|| (or its high-order derivatives), the optimal
regularization parameter is expected to be near the corner of the curve, which corresponds to the point of
maximum curvature.

5 Experimental set-up

Figure 5 shows the open loop control system developed for vibrating the tested guitar. An electrodynamic
shaker (B&K model 4809) is connected to the guitar, close to the bridge, using a stinger and a piezoelectric
force transducer (B&K model 8200), and a small accelerometer (B&K model 4375) is used to measure the
bridge response, at the same location as during the recording session, on the bridge. A power amplifier
(B&K model 2712) operates the shaker, and a National Instrument acquisition board (USB-4431) is used to
generate the drive signal.
Before performing the identification, a swept sine test was conducted to measure the electromechanical
transfer function of the system in accordance with Eq. (1). It is defined as the ratio between the soundboard
response at the bridge (accelerometer signal) and the supply voltage, thus including the influence of all the
system parts, i.e. the amplifier, the shaker, the guitar and the transducers. Results are plotted in Figure
6. If a near constant value would normally be expected for the amplifier/shaker system because of their
rather flat frequency response in such operating frequency condition, one can observed in Figure 6 several
resonances, which fall near the resonance frequencies of the guitar, and thus evidence the load of the guitar
on the system and its interaction with the shaker.

(a)

(b)

Figure 5: Experimental set-up for vibrating the guitar. (a) Global view with the PC controler, the acquisision
module, the amplifier and the shaker; (b) detail of the shaker mounting with the force transducer and
accelerometer.
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Figure 6: Electromachanical transfer function of the
full experimental system.
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Figure 7: Measured acceleration and identified drive
voltage. Opening of Asturias.

6 Experimental results

We now illustrate the procedure to compute the control voltage by considering the recording of the opening
of Asturias. Figure 7 shows the acceleration signal measured during performance and the corresponding
control voltage signal, computed by inversion. The comparison shows the underlying trend that the input
acceleration and control voltage are very similar, but include differences of detail because of the variations
of the frequency response of the experimental set-up with frequency. For illustration, Figures 8a shows the
original and the regularized transfer functions, obtained for an optimal regularization parameter of ε = 18.47,
which effectively lies at the corner of the L-curve plotted in Figure 8b.
Generating and sending the voltage signal to the shaker, the resulting acceleration signal measured at the
bridge is shown in Figure 9, superimposed with the target acceleration measured during normal playing. As
can be seen, there is an overall good agreement between the two signals, with respect to both amplitude
and frequency content. The observed slight differences are the manifestation of the regularization process,
which results in some kind of filtering. A measure of the difference between the original and reproduced
accelerations can be given by the correlation coefficients, which is a measure of their linear dependance.
For uncorrelated signals, the coefficient is zero while equivalent signals result in correlation coefficient of
1. For this example, a value of 0.86 has been calculated, thus confirming strong similarities between the
original and reproduced signals.
In its present stage, the experimental implementation proves efficient for reproducing a large set of recorded
acceleration signals. The technique surely benefits from using a measured version of the transfer function
of the system, with a high signal-to-noise ratio (measurements were done using a slow sine sweep), which
may limit the perverse effect of noise and modelling errors during the inversion.

7 Conclusions

We developed a simple control strategy to vibrate artificially stringed instruments, which has the merit
to achieve closely accurate reproductions of real vibratory response. Based on inverse techniques, we
successfully computed the drive signal to be sent to a shaker in order to match a pre-recorded time-history
vibratory response, and paid specific attention to the regularization of the electromechanical transfer function
of our set-up. The experimental validation was then presented from accelerations signals recorded during
normal playing, and results showed the reliability of the procedure. Interestingly, by simple replay of the drive
signal, the developed technique offers a high degree of repeatibility which can benefit to studies of stringed
instruments when properly controlled playing conditions are required. Using the data base of acceleration
signals measured at the bridge in real playing conditions, we are currently imparting a long-term vibration
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Figure 8: (a) comparison of the original (black) and regularized (red) electromechanical transfer functions.
(b) corresponding L-curve for a logarithmically distributed range of regularization parameter.
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Figure 9: Experimental results. Comparison of the target and measured acceleration. Global time history
(a) and temporal zoom (b).



treatment to the test guitar in order to yield quantitative data on the effect of playing on the tone of stringed
instruments.
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