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Abstract

Tuning is a very important aspect for any musical instrument, not only concerning proper pitch but
also the tonal quality of the instrument. In this paper, we address bar instruments as an application.
Marimbas and vibraphones, have their first bending modes carefully tuned, being typically the first
modal frequency ratios of 1:4:10. Such tuning is usually achieved by shaping the bar profiles with
precision machine tools, a delicate and highly specialized task. In this paper we investigate the
possibility of obtaining similar results using suitably designed tuning masses attached to the bars. Two
application areas are illustrated: (1) Obtaining adequate tuning from common bars of constant cross-
section loaded with masses; (2) Correcting badly tuned bars with a minimal set of loading masses.
From a numerical point of view, such objectives are achieved by coupling structural modification
techniques with effective optimization schemes. Two tuning approaches are proposed: the first one
uses a full-sized finite element model of the mass-loaded bar, while the second one is based on a very
effective reduced model built using the modes of the non-corrected bar. After presenting the developed
tuning methods, we illustrate them on the above mentioned applications, based on simulated data.
Validation experiments are currently being prepared.

1 Introduction

The sound obtained from a struck bar presents numerous partials resulting from the vibrational modes.
Typically marimba and vibraphone bars are tuned such that the first three flexural modes display
frequency ratios of 1:3:9 or 1:4:10 [1]. At the present time, design and tuning of these instruments
is achieved by removing material from the bar, through precision machining tools, which allow the
tuner to change locally its mass and stiffness. Based on the empirical knowledge acquired through
trial and error procedures, such methods are often inefficient and costly. Benefiting from the growth
of computational power, significant advances in physical modeling and optimization procedures have
been made in recent years. In the field of music acoustics, these techniques were successfully applied
by several researchers, namely for the optimization of bell profiles [2], wind instruments optimization
[3, 4, 5], geometrical dimensions of violin components [6] as well as optimal design and numerical
simulation of mallet instruments and resonators [7, 8] . However, in all cases, bar tuning is achieved
by mass removal, an irreversible and skill demanding task, which makes it unapproachable for non
experts.



In this paper we couple optimization procedures with physical modeling techniques in order to explore
a new method to tune vibraphone and marimba bars, by attaching suitably designed masses to them,
a non-destructive, reversible and relatively effortless approach. Our method was drawn, essentially, to
correct poorly tuned bars, with a minimal set of loading masses. With this in mind, we developed a
methodology which consists in coupling structural modification techniques with effective optimization
schemes, in order to predict the positions and weight of each mass, to comply with a pre-defined target
of modal frequencies. Two approaches were used for the computations, the first using Finite Elements
modeling (FEM) techniques coupled with optimization strategies, while the second is based in a modal
formulation of the problem built from the modal properties of the unloaded bar calculated through FEM.
For the bar modeling, a simple Euler-Bernoulli FEM beam model was used, although, the applied
optimization techniques can be easily coupled with more refined models if needed.
For the optimization we use a gradient-based local optimization strategy which allows to find the
minimum of a multivariable error-function. This optimization technique is fast, however, being gradient-
based, it works only with continuous variables and it can get stuck in local minima, frequently being
ineffective. For that reason, some strategies were developed in order to overcome these problems
which will be discussed in this paper. After describing the physical modeling and the optimization
strategies, we present some illustrative cases for which we apply these strategies to the tuning of
vibraphone bars, in order to reach target frequencies complying the typical tuning ratios both for
continuous and discrete mass variables. The numerical results demonstrate the feasibility of the
developed method for the given conceptual system. The effectiveness and robustness of the proposed
techniques illustrated by our simulations are quite encouraging. Experimental validation is currently
being addressed.

2 Physical modeling

In order to predict the dynamical behavior of the system, two different approaches were used for the
physical modeling of the bars, namely Finite Elements Method and modal formulation.

2.1 Finite Element Modeling

In this section we describe the FEM model for the original bar without the tuning masses referred to
as the “original system” and the modeling of the system modified by additional masses attached to the
bar - the “modified system”.

2.1.1 Original bar without masses

For the original system (i.e. the model of the bar without tuning masses), in order to study the lowest
three flexural modes of interest, we used the Euler-Bernoulli beam model, which for a bar with variable
cross-section BH(x) is formulated as [9]:

ρA(x)
∂2y

∂t2
+

∂2

∂x2

(
EI(x)

∂2y

∂x2

)
= 0, (1)

where ρ is the density of the bar material, A(x) = BH(x) is the cross-sectional area of the bar, y is the
flexural movement, E is the Young modulus, and I(x) = BH(x)3

12 is the bar flexural moment of inertia.
Finite element discretization of Eq. (1) enables the computation of the elementary stiffness and mass
matrices, which after assembling leads to the dynamical formulation of the bar in terms of the physical
coordinates:

[Mos]{Ÿ (t)}+ [Kos]{Y (t)} = {0}. (2)

Here [Mos] and [Kos] are the global mass and stiffness matrices of the “original system” and {Y} is
the vector of physical displacements. From the mass and stiffness properties of Eq. (2), the bar modal



frequencies ωm and modeshapes {ϕm} were computed assuming harmonic solutions:

{Y (t)} = {ϕm}exp(iωmt), (3)

and solving the generalized eigenvalue problem with the classic formulation:(
− ω2

m[Mos] + [Kos]
)
{ϕm} = {0}. (4)

2.1.2 Bar with additional tuning masses

Modeling of the system modified by additional masses attached to the bar can be achieved in terms of
the physical coordinates as:

[Mos]{Ÿ (t)}+ [Kos]{Y (t)} = −[Mad]{Ÿ (t)}, (5)

where [Mad] is the mass matrix of the additional point massesmp at p = 1, 2, ... , P locations, a diagonal
matrix with terms corresponding to the locations of the additional masses, whereMad(p, p) = mp. Thus,
from (5), we obtain the following formulation for the “modified system”:

[Mms]{Ÿ (t)}+ [Kos]{Y (t)} = {0}, (6)

where:

[Mms] = [Mos] + [Mad]. (7)

Similarly to the original system, the modal frequencies and corresponding modeshapes were computed
through a generalized eigenvalue problem as described by:

(
−ω2

m[Mms] + [Kos]
)
{ϕm} = {0}. (8)

2.2 Modal-based modeling

A modal formulation of the system dynamics is surely well-suited for the aims of this work since
it provides a physical model with a reduced number of equations and consequently requires less
computational efforts.

2.2.1 Original bar without masses

To obtain the modal formulation for the basic system, we can reformulate (2) through the transformation:

{Y (t)} = [Φos]{Q(t)}, (9)

where [Φos] = [{ϕos1}{ϕos2}, ..., {ϕosn}] obtained in (4) and Q(t) is the vector of the modal amplitudes.
After multiplication by [Φos]

T , and using the classical orthogonality properties, we obtain the following
modal formulation for the original system:

[Mos]{Q̈(t)}+ [Kos]{Q(t)} = {0}, (10)

where:

[Mos] = [Φos]
T [Mos][Φos] (11)

[Kos] = [Φos]
T [Kos][Φos], (12)

are the diagonal modal mass and modal stiffness matrices of the original system. Moreover, in order
to improve the results accuracy, the stiffness matrix [Kos] used for the computations was built as:

[Kos] = [Mos][ω
2
exp], (13)

being [ω2
exp] = diag({ω2

1 , ω
2
2 , ..., ω

2
n}), where ωn = 2πfn is the angular frequency of mode index n,

obtained through experimental modal analysis of a laboratory bar.



2.2.2 Bar with additional tuning masses

The modal formulation for the modified system can be obtained by applying the methodology described
from (9) to (12) to the modal formulation of the modified system given in (6), thus resulting in:

[Mms]{Q̈(t)}+ [Kos]{Q(t)} = {0}, (14)

where:

[Mms] = [Φms]
T [Mms][Φms] = [Φms]

T ([Mos] + [Mad])[Φms] (15)

[Kms] = [Φms]
T [Kos][Φms]. (16)

However, a clever and more economical solution for obtaining the modes of the mass-loaded system,
most suitable for performing optimization iterations, may be devised directly from the modes of the
original system. Starting from Eq. (5) and using Eq. (9), one obtains:

[Mos][Φos]{Q̈(t)}+ [Kos][Φos]{Q(t)} = −[Mad][Φos]{Q̈(t)}, (17)

hence, pre-multiplying by [Φos]
T :

[Mos]{Q̈(t)}+ [Kos]{Q(t)} = −[Φos]
T [Mad][Φos]{Q̈(t)}, (18)

obtaining: (
[Mos] + [Φos]

T [Mad][Φos]
)
{Q̈(t)}+ [Kos]{Q(t)} = 0 (19)

yielding to the modified eigenvalue problem for the mass-loaded system:

(
− ω2

m

(
[Mos] + [Φos]

T [Mad][Φos]
)

+ [Kos]
)
{ϕm} = {0}. (20)

Notice that, because formulation (20) is already based on the reduced model of the original system, the
computation of the mass-loaded modes using (20) is much more economical than the equivalent - but
much larger - eigenvalue computation (8). Actually, an improvement of at least one order of magnitude
in computation time is achieved when performing optimizations using the modal approach, comparing
to the FEM.

3 Optimization strategies

Essentially, an optimization problem consists in finding the values of a set of variables that maximize
or minimize an error-function. Most of the optimization problems can be formulated in several different
manners using different strategies. In this study we used a deterministic local optimization method
which proved to be effective [10]. Local optimization algorithms are gradient based and try to
find the nearest local optimal solution. This is a fast method, but it is prone to get stuck in local
minima. Therefore, some strategies were developed in order to avoid this problem. Moreover, being
gradient based, it implies the use of continuous variables for the optimization. This allows accurate
results, however, experimental work often becomes very costly and time consuming when working
with continuous mass variables, since it would imply manufacturing n customized masses for each
experiment. Then, for practical reasons, we also developed a discrete optimization strategy, in order
to avoid the use of nonstandard mass devices for the experimental validation, which is now being
prepared.

3.1 Continuous optimization

For the continuous optimization strategy our aim is to find the optimal mass values M∗
n =

{m∗
1,m

∗
2, ...,m

∗
n}, (where mn ≥ 0) and their respective optimal positions L∗

n = {`∗1, `∗2, ..., `∗n} (with



0 ≤ `n ≤ L) for a given number n of masses required to minimize the differences between the actual
modal frequencies of the system and a given set of target frequencies. We used a multivariable function
optimization approach in order to minimize the error-function E(Mn, Ln):

E(Mn, Ln) =

J∑
j=1

∣∣∣∣ωF
j − ωj(Mn, Ln)

ωF
j

∣∣∣∣, (21)

where J is the number of modes to optimize, ωF
j are the target frequencies, and ωj(Mn, Ln) are the

computed modal frequencies for the mass values Mn and their respective positions Ln. As mentioned
above, depending on the initial solution given, the algorithm tends to get trapped in a local minimum.
In order to overcome this problem, we repeated the optimization process several times using random
initial positions and mass values. Thus, several different initial solutions lead to several error values
E(Mn, Ln). In the end, the minimal error value E(Mn, Ln) gives the optimal solution (M∗

n, L
∗
n).

3.2 Discrete optimization

For the practical reasons mentioned above, we developed a discrete optimization strategy which
combines continuous position variables Ln with a set of n predefined discrete mass values Md =
{md

1,m
d
2, ...,m

d
N}, in order to find the discrete optimal solutions Md

n
∗, with md

n ∈ Md, and respective
positions that minimize (21). In this work we used a standard approach to solve discrete optimization
problems, which consists in three basic steps [11]. First, a continuous optimization of the problem is
performed in order to find the continuous optimal solution L∗

n and M∗
n. Likely, the found continuous

mass values M∗
n do not belong to the predefined set of discrete possible mass values Md. Thus,

for each found M∗
n variable, the upper and lower closest discrete values belonging to Md are then

searched, thereby creating two possibilities for each variable. Secondly, for each possible set of
discrete variables combination, a continuous optimization is performed in order to establish a new
optimum value for the continuous position variables L∗

n(Md
n). Finally, the comparison of the optimization

results for the several discrete value combinations allows us to find the optimal solution (L∗
n,M

d
n
∗
) of

the discrete problem.

4 Applications

In this section we illustrate the computations used in order to obtain typical vibraphone bar tuning ratios
of 1:4:10 for the first three modes, having as starting point both an untuned vibraphone bar of variable
cross section and a uniform cross section aluminium bar. In all cases, for the FEM modal computations,
we used a mesh consisting of 64 elements and the values of 710 GPa and 2750 Kg/m3 for the Young
modulus and density, respectively.

4.1 Tuning a vibraphone bar

Here we present the optimization results for the tuning of a vibraphone bar of variable cross section,
using the developed continuous and discrete optimization strategies previously described. The
modeled bar dimensions are 0.45 m (length), 0.04 m (width) and variable heights between 1 and
0.042 m, with a total mass of about 1 Kg. The original fundamental frequency of the bar was of
271Hz (frequency of musical note C#), and tuning ratios 1:4.2:11.2 for the first three modes. In this
case, the aim was to obtain the tuning ratios of 1:4:10, and 261Hz (frequency of musical note C) for
the fundamental frequency, which corresponds to correct tuning modal errors of 4%, 8% and 14%,
respectively.

4.1.1 Continuous optimization

Figures 1 and 2 show, in blue, the modeled bar profile and, in red, the tuning masses and respective
positions required to achieve the target tuning, given by the FEM and modal formulation optimization
approaches. For illustration, we represent the tuning mass heights, assuming that its lengths
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Figure 1: FEM continuous optimization
results (M∗

n, L
∗
n). Blue: original bar

profile; Red: additional tuning masses.
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Figure 2: Modal continuous optimization
results (M∗

n, L
∗
n). Blue: original bar

profile; Red: additional tuning masses.
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Figure 3: Error value E(Mn, Ln).

Mass
number

Optimal solution

FEM Modal

Continuous Discrete Continuous Discrete

L∗
n M∗

n L∗
n(M

d∗
n ) Md∗

n L∗
n M∗

n L∗
n(M

d∗
n ) Md∗

n

1 0.091 0.116 0.098 0.110 0.082 0.084 0.083 0.090
2 0.105 0.066 0.107 0.060 0.115 0.086 0.113 0.090
3 0.198 0.013 0.205 0.010 0.215 0.009 0.206 0.010
4 0.252 0.013 0.245 0.010 0.235 0.009 0.244 0.010
5 0.345 0.066 0.343 0.060 0.335 0.086 0.337 0.090
6 0.359 0.116 0.352 0.110 0.368 0.084 0.366 0.090

Table 1: Computed Mass values and respective positions using the FEM and modal optimization
approaches for both continuous and discrete optimization strategies.

and widths are the same as those of each element of the mesh (0.007m and 0.4m respectively),
corresponding to the continuous optimal mass values M∗

n and positions L∗
n presented in Table 1, in

a total of 0.390 Kg and 0.358 Kg for the FEM and modal approaches respectively. As seen, different
solutions were found for each approach, meaning the existence of several solutions that comply with the
target tuning, and that different local minima were accepted as the solution for each case. Furthermore,
Figure 3 displays a typical evolution of the error during the optimization process, illustrating the correct
behavior of the optimization process.

Table 2 shows the relative errors for the first three modes, relative to the ideal tuning ratios 1:4:10,



Modo Target ratio Relative error in modal frequencies (%)

Original FEM Modal

Continuous Discrete Continuous Discrete

1 1 3.8 1.9 10−5 4.0 10−2 9.5 10−6 2.4 10−2

2 4 8.3 2.1 10−4 1.6 10−1 5.8 10−6 7.0 10−2

3 10 14 1.6 10−5 3.4 10−2 2.7 10−5 1.2 10−1

Table 2: Modal errors for the first three modes, relative to the target frequency ratios of 1:4:10, using
three different optimization approaches (continuous FEM, discrete FEM, continuous modal and discrete
modal optimization).

before and after the optimizations. FEM and modal optimization approaches similarly provide results
with great accuracy, illustrating the effectiveness of both developed approaches. However, the modal
formulation allows faster computation times, since it is able to significantly reduce the number of
equations needed to represent the system (in this case 7 equations).

4.1.2 Discrete optimization

We now turn to the results achieved through the discrete optimization strategy obtained using, initially,
the respective continuous optimal solution (M∗

n, L
∗
n), presented in Section 3.1. In this case, we

predefined a set of discrete masses Md = {md
1,m

d
2, ...,m

d
n}, in the range between 0 and 0.3 Kg,

with a step increase of 10 grams per mass, obtaining as optimal solution the discrete values Md
n
∗

and respective positions L∗
n presented in Table 1. By comparing the continuous and discrete optimal

solutions, we can see that the mass values of the continuous solution were rounded to the closest upper
or lower mass values pertaining to the predefined set of discrete masses Md. Also, the continuous
optimal position solutions L∗

n obtained with the continuous optimization strategy were slightly adjusted
in order to find the minimal error E(Mn, Ln). In Table 2 we can see that the tuning errors are larger
than those obtained through the continuous optimization strategy as one would expect because of the
limitations of the available masses. However, errors less than 1.6 10−1% still are very accurate results,
which would result in inaudible tuning errors.

4.2 Obtaining a vibraphone bar from an uniform bar

Here we illustrate the computations to obtain typical vibraphone bar tuning with ratios of 1:4:10 for the
first three modes, having as starting point an uniform cross section alluminium bar with 0.5 m length,
0.06 m width and 0.02 m height and a mass of 1.8 Kg. The bar fundamental frequency is 412 Hz, and
the original frequency ratios for the first three modes are 1:2.8:5.4. This corresponds to correct tuning
errors of 106%, 42% and 11%, for the three modes of interest, which represents a far larger decrease
of the modal frequencies than in sections 4.1.1 and 4.1.2.

4.2.1 Continuous optimization

The tuning masses and respective positions required to achieve the target tuning, given by the FEM
and modal formulation optimization approaches are represented in Figures 4 and 5. In this cases,
for representative purposes, we calculated the punctual tuning masses heights, assuming lengths of
three times the length of a mesh element and widths equal to those of each element of the mesh
and a density of 7850 Kg/m3 (density of stainless steel). The corresponding continuous optimal mass
values M∗

n and respective positions L∗
n are presented in Table 3. As expected, heavier masses were

needed in this case, for the big change of frequencies required to comply with the predefined target
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Figure 4: FEM continuous optimization
results (M∗

n, L
∗
n). Blue: original bar

profile; Red: additional tuning masses.
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Figure 5: Modal continuous
optimization results (M∗

n, L
∗
n). Blue:

original bar profile; Red: additional
tuning masses.

tuning. However, as we can see in Table 4, despite the large original mistuning, both FEM and modal
approaches allow accurate results, demonstrating that the developed tuning approaches can be used
not only for relatively small tuning corrections but also for substantial ones. Once again, different
solutions, with total masses of 7.4 Kg and 5.0 Kg (for the FEM and modal approaches respectively)
were found for each approach, which means that different local minima were accepted as the optimal
solution for each case.

Mass
number

Optimal solution

FEM Modal

Continuous Discrete Continuous Discrete

L∗
n M∗

n L∗
n(M

d∗
n ) Md∗

n L∗
n M∗

n L∗
n(M

d∗
n ) Md∗

n

1 0.038 3.225 0.038 3.220 0.033 0.287 0.032 0.290
2 0.055 0.069 0.055 0.070 0.037 1.715 0.037 1.720
3 0.199 0.407 0.199 0.410 0.207 0.514 0.208 0.520
4 0.303 0.407 0.303 0.410 0.294 0.514 0.293 0.520
5 0.446 0.069 0.446 0.070 0.464 1.715 0.464 1.720
6 0.464 3.225 0.464 3.220 0.468 0.287 0.469 0.290

Table 3: Computed optimal mass values and respective positions using the FEM and modal
approaches for both continuous and discrete optimization strategies.

Modo Target ratio Relative error in modal frequencies (%)

Original FEM Modal

Continuous Discrete Continuous Discrete

1 1 3.8 5.5 10−6 4.7 10−2 1.2 10−8 1.4 10−3

2 4 8.3 6.8 10−5 1.6 10−1 2.9 10−6 1.1 10−2

3 10 14 2.9 10−6 2.7 10−2 7.3 10−6 3.1 10−3

Table 4: Relative errors in modal frequencies for the first three modes, relative to the target frequency
ratios of 1:4:10, using four different strategies (continuous FEM, discrete FEM, continuous modal and
discrete modal optimization).



4.2.2 Discrete optimization

The discrete optimization strategy was performed starting from the FEM and modal continuous optimal
solutions (M∗

n, L
∗
n) presented in Table 3 and predefining a set of discrete masses Md as in section

5.1.2, but this time for masses between 0 and 4 Kg. Also in this case, the tuning errors presented in
Table 2 allow us to conclude that a very precise tuning can also be achieved with the discrete strategy.

5 Conclusions

In this work, we coupled physical modeling with optimization strategies in order to develop a
methodology for the tuning of several transient-excited musical instruments. The methodology was
illustrated with numerical calculations and the results show the effectiveness and robustness of the
developed tuning techniques for two different conceptual cases. The use of gradient based local
optimization methods, and particularly when combined with the modal formulation approach allows very
fast computations. Being non-destructive and applicable to several musical instruments, we believe that
these techniques can be very useful for musical instruments industry in the future. Experiments are
being prepared in order to validate the presented tuning techniques.
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