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ABSTRACT 
 
Tibetan bowls have been traditionally used for ceremonial and meditation purposes, but are 
also increasingly being used in contemporary music-making. They are handcrafted using alloys 
of several metals and produce different tones, depending on the alloy composition, their shape, 
size and weight. Most important is the sound producing technique used – either impacting or 
rubbing, or both simultaneously – as well as the excitation location, the hardness and friction 
characteristics of the exciting stick (called puja). 
 
Quite recently, researchers became interested in the physical modelling of singing bowls, using 
waveguide synthesis techniques for performing numerical simulations. Their efforts aimed 
particularly at achieving real-time synthesis and, as a consequence, several aspects of the 
physics of these instruments do not appear to be clarified in the published formulations and 
results. 
 
In this paper, we extend to axi-symmetrical shells – subjected to impact and friction-induced 
excitations – our modal techniques of physical modelling, which were already used in previous 
papers concerning plucked and bowed strings as well as impacted and bowed bars. We start by 
an experimental modal identification of three different Tibetan bowls, and then develop a 
modelling approach for Tibetan bowls. Extensive nonlinear numerical simulations were 
performed, for both impacted and rubbed bowls, which are presented in a companion paper. 
 
 
INTRODUCTION 
 
Singing bowls are traditionally made in Tibet, Nepal, India, China and Japan. Although the 
name qing has been applied to lithophones since the Han Chinese Confucian rituals, more 
recently it also designates the bowls used in Buddhist temples. In the Himalaya there is a very 
ancient tradition of metal manufacture, and bowls have been handcrafted using alloys of several 
metals – mainly copper and tin, but also other metals such as gold, silver, iron, lead, etc. – each 
one believed to possess particular spiritual powers. There are many distinct bowls, which 
produce different tones, depending on the alloy composition, their shape, size and weight. Most 
important is the sound producing technique used – either impacting or rubbing, or both 
simultaneously – as well as the excitation location, the hardness and friction characteristics of 
the exciting stick (called puja, frequently made of wood and eventually covered with a soft skin). 
Tibetan bowls have been used essentially for ceremonial and meditation purposes. 
Nevertheless, these amazing instruments are increasingly being used in contemporary music.  



Quite recently, some researchers became interested in the physical modelling of singing bowls, 
using waveguide synthesis techniques for performing numerical simulations [1-3]. Their efforts 
aimed particularly at achieving real-time synthesis. Therefore, understandably, several aspects 
of the physics of these instruments do not appear to be clarified in the published formulations 
and results. For instance, to our best knowledge, an account of the radial and tangential 
vibratory motion components of the bowl shell – and their dynamical coupling – has been 
ignored in the published literature. Also, how these motion components relate to the travelling 
position of the puja contact point is not clear at the present time. Details of the contact/friction 
interaction models used in simulations have been seldom provided, and the significance of the 
various model parameters has not been asserted. On the other hand, experiments clearly show 
that beating phenomena arises even for near-perfectly symmetrical bowls, an important aspect 
which the published modelling techniques seem to miss (although beating from closely 
mistuned modes has been addressed – not without some difficulty [3] – but this is a quite 
different aspect). Therefore, it appears that several important aspects of the excitation 
mechanism in singing bowls still lack clarification. 
 
In this paper, we extend to axi-symmetrical shells – subjected to impact and friction-induced 
excitations – our modal techniques of physical modelling, which were already used in previous 
papers concerning plucked and bowed strings [4-7] as well as impacted and bowed bars [7-10]. 
Our approach is based on a modal representation of the unconstrained system – here 
consisting on two orthogonal families of modes of similar (or near-similar) frequencies and 
shapes. The bowl modeshapes have radial and tangential motion components, which are prone 
to be excited by the normal and frictional contact forces between the bowl and the impact/sliding 
puja. At each time step, the generalized (modal) excitations are computed by projecting the 
normal and tangential interaction forces on the modal basis. Then, time-step integration of the 
modal differential equations is performed using an explicit algorithm. The physical motions at 
the contact location (and any other selected points) are obtained by modal superposition. This 
enables the computation of the motion-dependent interaction forces, and the integration 
proceeds. Details on the specificities of the contact and frictional models used in our simulations 
are given. An experimental modal identification has been performed for three different Tibetan 
bowls (Figure 1), the main results of which are supplied. Then, we produce an extensive series 
of nonlinear numerical simulations, for both impacted and rubbed bowls, showing the influence 
of the contact/friction parameters on the dynamical responses. From our computations, sounds 
and animations have been produced, which are reported in a companion paper [11].  
 

 
Figure 1 – Picture of the three singing bowls and pujas used in the experiments:  

Bowl 1 (φ = 180 mm) ; Bowl 2 (φ = 152 mm); Bowl 3 (φ = 140 mm). 
 
 
EXPERIMENTAL MODAL IDENTIFICATION 
 
In order to estimate the natural frequencies nω , damping values nς , modal masses nm  and 
modeshapes ( , )n zϕ θ  to be used in the numerical simulations, an experimental modal 
identification based on impact testing was performed for three bowls. A mesh of 120 test 
locations was defined for each instrument (e.g., 24 points regularly spaced azimuthally, at 5 
different heights). Impact excitation was performed on all of the points and the radial responses 



were measured by two accelerometers attached to inner side of the bowl at two positions, 
located at the same horizontal plane (near the rim) with a relative angle of 55º between them, as 
can be seen in Figure 2(a). Modal identification was achieved by developing a MDOF algorithm 
in the frequency domain [12]. The modal parameters were optimized in order to minimize the 
error ( , , , )n n n nmε ω ς ϕ  between the measured transfer functions ( ) ( ) ( )er r eH Y Fω ω ω=  and the 
fitted modal model ˆ ( ; , , , )

er n n n n
H mω ω ς ϕ , for all measurements ( eP  excitation and rP  response 

locations), in a given frequency range [ ]min max,ω ω encompassing N  modes. Hence: 
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where the modal amplitude coefficients are given as ( , ) ( , )er
n n e e n r r nA z z mϕ θ ϕ θ=  and the two 

last terms in (2) account for modes located out of the identified frequency-range. The values of 
the modal masses obviously depend on how modeshapes are normalized (we used 

max
( , ) 1zϕ θ = ). Note that the identification is nonlinear in nω  and nς  but linear in er

nA . 
 
Results from the experiments on the three bowls show the existence of 5 to 7 prominent 
resonances with very low modal damping values up to frequencies about 4 ~ 6 kHz. As an 
illustration, Figure 2(b) depicts the modulus of a frequency response function obtained from 
Bowl 2, relating the acceleration measured at point 1 to the force applied at the same point. 
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Figure 2 – Experimental modal identification of bowl 2: (a) Picture showing the measurement grid and 
accelerometer locations; (b) Modulus of the accelerance frequency response function 
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Figure 3 – Experimentally identified modeshapes (j,k) of the first 7 elastic modes of Bowl 2  
(j  relates to the number of nodal meridians and  k  to the number nodal circles – see text)  

 
The shapes of the identified bowl modes are mainly due to bending waves that propagate 
azimuthally, resulting in patterns similar to some modeshapes of bells [13]. Following Rossing, 
notation (j,k) represents here the number of complete nodal meridians extending over the top of 
the bowl (half the number of nodes observed along a circumference), and the number of nodal 



circles, respectively. Figure 3 shows perspective and top views of the first 7 “sounding” 
modeshapes (rigid-body modes are not shown) for Bowl 2, as extracted from experiments. In 
the frequency-range explored, all the identified modes are of the (j,0) type, due to the low value 
of the height to diameter ratio ( /Z φ ) for Tibetan bowls, in contrast to most bells. 
Although modal frequencies and damping values were obtained from the modal identification 
routine, it was soon realized that the accelerometers and their cables had a non-negligible 
influence on the bowl modal parameters (the very low damping was particularly affected by the 
instrumentation). Indeed, measurements of the near-field sound pressure radiated by impacted 
bowls showed slightly higher values for the natural frequencies and much longer decay times, 
when compared to those displayed after transducers were installed. Hence, we decided to use 
the modal parameters identified from the acoustic responses of non-instrumented impacted 
bowls. Modal frequencies were extracted from the sound pressure spectra and damping values 
were computed from the logarithm-decrement of band-pass filtered (at each mode) sound 
pressure decays. 
 
Table 1 shows the values of the modal frequencies for the most prominent modes of the three 
bowls tested, together with their ratios to the fundamental – mode (2,0) –, which are entirely in 
agreement with the results obtained by Rossing [13]. Interestingly, these ratios are rather 
similar, in spite of the different bowl shapes, sizes and wall depths. The frequency relationships 
are mildly inharmonic, which does not affect the definite pitch of this instrument, mainly 
dominated by the first (2,0) shell mode. As stated, dissipation is very low, with modal damping 
ratios typically in the range nς = 0.002 ~ 0.015 % (higher values pertaining to higher-order 
modes). However, note that these values may increase one order of magnitude, or more, 
depending on how the bowls are actually supported or handled. 
 

Table 1 – Modal frequencies and frequency ratios of the three bowls 

 Bowl 1 Bowl 2 Bowl 3 
 (mT = 934 g, φ = 180 mm) (mT = 563 g, φ = 152 mm) (mT = 557 g, φ = 140 mm) 

Mode fn [Hz] fn/f1 fn [Hz] fn/f1 fn [Hz] fn/f1 
(2,0) 221 1,0 314 1,0 528 1,0 
(3,0) 614 2,8 836 2,7 1460 2,8 
(4,0) 1145 5,2 1519 4,8 2704 5,1 
(5,0) 1804 8,1 2360 7,5 4122 7,8 
(6,0) 2577 11,6 3341 10,7 5694 10,8 
(7,0) 3456 15,6 4462 14,2 - - 
(8,0) 4419 20,0 5696 18,2 - - 

 
 
FORMULATION OF THE DYNAMICAL SYSTEM 

Dynamical Formulation of the Bowl in Modal Coordinates 
Perfectly axi-symmetrical structures exhibit double vibrational modes, occurring in orthogonal 
pairs with identical frequencies ( A B

n nω ω= ) [14]. However, if a slight alteration of this symmetry is 
introduced, the natural frequencies of these two degenerate modal families deviate from 
identical values by a certain amount nω∆ . The use of these modal pairs is essential for the 
correct dynamical description of axi-symmetric bodies, under general excitation conditions. 
Furthermore, shell modeshapes present both radial and tangential components. Figure 4 
displays a representation of the first four modeshape pairs, near the bowl rim, where the 
excitations are usually exerted (e.g., ez Z≈ ). Both the radial (green) and tangential (red) 
motion components are plotted, which for geometrically perfect bowls can be formulated as: 

( ) ( ) ( )
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B Br Bt
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where ( )Ar
nϕ θ  corresponds to the radial component of the A family nth modeshape, ( )At

nϕ θ  to 
the tangential component of the A family nth mode shape, etc. Figure 4 shows that spatial 
phase angles between orthogonal mode pairs are / 2 jπ . One immediate conclusion can be 
drawn from the polar diagrams shown and equations (5,6): the amplitude of the tangential 
modal component decreases relatively to the amplitude of the radial component as the mode 
number increases. This suggests that only the lower-order modes are prone to engage in self-
sustained motion due to tangential rubbing excitation by the puja. 
 
 

 

 
 

Figure 4 – Mode shapes at the bowl rim of the first four orthogonal mode pairs 
(Blue: Undeformed; Green: Radial component; Red: Tangential component) 

 
If linear dissipation is assumed, the motion of the system can be described in terms of the 
bowl’s two families of modal parameters: modal masses X

nm , modal circular frequencies X

nω , 
modal damping X

nζ , and mode shapes ( )X
nϕ θ  (at the assumed excitation level ez Z≈ ), with 

Nn ,,2,1= , where X  stands for the modal family A  or B . The order N  of the modal 
truncation is problem-dependent and should be asserted by physical reasoning, supported by 
the convergence of computational results. The maximum modal frequency to be included, Nω , 
mostly depends on the short time-scales induced by the contact parameters – all modes 
significantly excited by impact and/or friction phenomena should be included in the 
computational modal basis.  
 
The forced response of the damped bowl can then be formulated as a set of 2N ordinary 
second-order differential equations: 
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where: 
[ ] 1Diag( , , )N
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XM m m= , [ ] 1 1 1Diag(2 , , 2 )X X X X X X

X N N NC m mω ζ ω ζ= , [ ] 2 2

1 1Diag( ( ) , , ( ) )X X X X

X N NK m mω ω=   
are the matrices of the modal parameters (where X stands for A or B), for each of the two 
orthogonal mode families, while { } 1( ) ( ), , ( )

TX X

X NQ t q t q t=  and { } 1( ) ( ), , ( )
TX X

X Nt t tΞ = ℑ ℑ  are 
the vectors of the modal responses and of the generalized forces, respectively. Note that, 
although equations (7) obviously pertain to a linear formulation, nothing prevents us from 
including in ( )X

n tℑ  all the nonlinear effects which arise from the contact/friction interaction 
between the bowl and the puja. Accordingly, the system modes become coupled by such 
nonlinear effects. 
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The modal forces ( )X

n tℑ  are obtained by projecting the external force field on the modal basis: 

2

0
( ) ( , ) ( ) ( , ) ( ) ; 1, 2, ,X Xr Xt

n r n t nt F t F t d n N
π

θ ϕ θ θ ϕ θ θℑ = + =  ∫                (8) 

where ( , )rF tθ  and ( , )tF tθ  are the radial (impact) and tangential (friction) force fields applied by 
the puja – e.g., a localised impact ( , )r cF tθ  and/or a travelling rub , ( ( ), )r t cF t tθ . The radial and 
tangential physical motions can be then computed at any location θ  from the modal amplitudes 

( )X

nq t  by superposition: 

1
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and similarly concerning the velocities and accelerations. 
 

Dynamics of the Puja and Force Field Formulation 
As mentioned before, the excitation of these musical instruments can be performed in two basic 
different ways: by impact or by rubbing around the rim of the bowl with the puja (these two types 
of excitation can obviously be mixed, resulting in musically interesting effects). The dynamics of 
the puja will be formulated simply in terms of a mass Pm  subjected to a normal (e.g. radial) 
force ( )NF t  and an imposed tangential rubbing velocity ( )TV t  – which will be assumed constant 
in time for all our exploratory simulations [11] – as well as to an initial impact velocity in the 
radial direction 

0( )NV t . These three parameters will be assumed controlled by the musician, and 
many distinct sounds may be obtained by changing them: in particular, 

0 0( )NV t ≠  with 
0N TF V= =  will be “pure” impact, and ( ) 0 , ( ) 0TNF t V t≠ ≠  with 

0 0( )NV t =  will be “pure” singing 
(see [11]). The radial motion of the puja, resulting from the external force applied and the 
impact/friction interaction with the bowl is given by: 

( ) ( , )P P N rm y F t F tθ= − +                   (11) 

Contact Interaction Formulation 
The radial contact force resulting from the interaction between the puja and the bowl is simply 
modelled as a contact stiffness, eventually associated with a contact damping term: 

( ) ( ) ( ), ,r c c r c c r cF K y t C y tθ θ θ= − −                        (12) 

where ry  and ry  are respectively the bowl/puja relative radial displacement and velocity, at the 
(fixed or travelling) contact location ( )c tθ , cK  and cC  are the contact stiffness and damping 
coefficients, directly related to the puja material. Other and more refined contact models – for 
instance of the hertzian type, eventually with hysteretic behaviour – could easily be 
implemented instead of (12). Such refinements are however not a priority here. 

Friction Interaction Formulation 
In previous papers we have shown the effectiveness of a friction model used for the simulation 
of bowed strings and bowed bars [4,9]. Such model enabled a clear distinction between sliding 
and adherence states, sliding friction forces being computed from the Coulomb model 

( ) ( )t r d t tF F y sgn yµ= − , where ty  is the the bowl/puja relative tangential velocity, and the 
adherence state being modelled essentially in terms of a local “adherence” stiffness aK  and 
some damping. We were thus able to emulate true friction sticking of the contacting surfaces, 
whenever t r sF F µ< , however at the expense of a longer computational time, as smaller 
integration time-steps seem to be imposed by the transitions from velocity-controlled sliding 
states to displacement-controlled adherence states. 
 
In this paper, a simpler approach is taken to model friction interaction, which allows for faster 
computation times, although it lacks the capability to emulate true friction sticking. The friction 
force will be formulated as: 
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       (13) 

where sµ  is a “static” friction coefficient and ( )d tyµ  is a “dynamic” friction coefficient, which 
depends on the puja/bowl relative surface velocity ty . We will use the following model: 

( )( ) ( ) exp ( , )d t s t cy C y tµ µ µ µ θ∞ ∞= + − −                                     (14) 

where, 0 sµ µ∞≤ ≤  is an asymptotic lower limit of the friction coefficient when ty → ∞ , and 
parameter C  controls the decay rate of the friction coefficient with the relative sliding velocity, 
as shown in the typical plot of Figure 5(a). This model can be fitted to the available experimental 
friction data (obtained under the assumption of instantaneous velocity-dependence), by 
adjusting the empirical constants sµ , µ

∞
 and C . 

 
Notice that both equations (13) correspond to velocity-controlled friction forces. For values of ty  
outside the interval [ , ]ε ε− , the first equation simply states Coulomb’s model for sliding. Inside 
the interval [ , ]ε ε− , the second equation models a state of pseudo-adherence at very low 
tangential velocities. Obviously, ε  acts as a regularization parameter for the friction force law, 
which replaces the “zero-velocity” discontinuity (which renders the adherence state numerically 
tricky), as shown in Figure 5(b). This regularization method, extensively developed in [15], has 
been often used as a pragmatic way to deal with friction phenomena in the context of dynamic 
problems. However, using this model, the friction force will always be zero at zero sliding 
velocity, inducing a relaxation on the “adherence” state (dependent on the magnitude of ε ), 
and therefore disabling a true sticking behaviour. How pernicious this effect may be is problem-
dependent – systems involving a prolonged adherence will obviously suffer more from the 
relaxation effect than systems which are sliding most of the time. These issues will be 
thoroughly discussed elsewhere. For the problem addressed here, we have obtained realistic 
results using formulation (13), for small enough values of the regularization domain (we used 

4 -110 msε −± ≈ ) – results which do not seem to critically depend on ε  (within reasonable limits). 
 
 

 
(a)                  (b) 

Figure 5 – Evolution of the friction coefficient with the contact relative tangential velocity ( µ∞ = 0.2, sµ = 0.4,C = 
10): (a) For -1< ty  <1; (b) For -0.01< ty <0.01 

 

Time-Step Integration 
For given external excitation and initial conditions, the previous system of equations is 
numerically integrated using an adequate time-step algorithm. Explicit integration methods are 
well suited for the contact/friction model developed here. In our implementation, we used a 
simple Verlet integration algorithm [10], which is a low-order explicit scheme. 
 
 
 



CONCLUSIONS 
 
In this paper we have presented a modelling technique based on a modal approach which can 
achieve accurate time-domain simulations of impacted and/or rubbed axi-symmetrical structures 
such as the Tibetan singing bowl.  
 
To substantiate the numerical simulations presented in a companion paper, we performed an 
experimental modal analysis on three bowls. Results show the existence of 5 to 7 prominent 
vibrational modes up to frequencies about 6 kHz, with very low modal damping values. 
 
As a concluding note, the computational methods presented in this paper can be easily adapted 
for the dynamical simulation of glass harmonicas, by simply changing the modes of the 
computed system, as well as the contact and friction parameters. 
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