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ABSTRACT 
 
In a companion paper we presented a modal method to simulate the dynamical responses of a 
Tibetan bowl under impact or rubbing excitation. In this paper we demonstrate the effectiveness 
of such modelling techniques with numerical simulations of bowls subjected to various playing 
conditions.  
 
We start by showing the influence of the contact model parameters on the dynamical responses 
of impacted bowls. Then proceed to rubbing excitation, assuming time-constant values of the 
normal force and tangential velocity imposed to the moving puja. For suitable friction 
parameters and for adequate ranges of the normal contact force and tangential rubbing velocity 
of the puja, instability of one of the lower-frequency shell modes (usually the first one) arises, 
with exponential increase of the vibration amplitude until saturation by nonlinear effects. 
 
Our simulation results highlight the existence of several motion regimes, both steady and 
unsteady, with either permanent or intermittent bowl/puja contact. Furthermore, the unstable 
modes spin at the angular velocity of the puja. As a consequence, for the listener, singing bowls 
behave as rotating quadropoles. The sound will always be perceived as beating phenomena, 
even if using perfectly symmetrical bowls. From our computations, sounds and animations have 
been produced, which appear to agree with qualitative experiments. 
 
 
INTRODUCTION 
 
In [1] we developed techniques for the physical modelling of Tibetan bowls, when subjected to 
impact, rub, or any combination of excitations. Here we will present results of a series of 
exploratory numerical simulations, for both impacted and rubbed bowls, which both demonstrate 
the effectiveness of the proposed computational techniques and highlight the main features of 
the physics of singing bowls. 
 
We discuss extensively the influence of the contact/friction parameters – as well as the 
influence of the normal contact force NF  and of the tangential velocity TV  of the exciter – on the 
produced sounds. From our computations, sounds and animations have been produced. Many 
aspects of the bowl responses highlighted in our simulations have been observed in preliminary 
qualitative experiments.  



NUMERICAL SIMULATIONS 
 
The numerical simulations presented here are based on the modal data of Bowl 2 (with rim 
diameter of 152 mm, a total mass of 563 g and a fundamental frequency of 314 Hz), which were 
identified in Part 1 (see Figure 1 in [1]). The puja is modeled as a simple mass of 20 g, moving 
at tangential velocity TV , and subjected to an external normal force NF  as well as to the 
bowl/puja nonlinear interaction force. 
 
We explore a significant range of rubbing parameters: NF  = 1 ~ 9 N and TV  = 0.1 ~ 0.5 m/s, 
which encompass the usual playing conditions, although calculations were made also using 
impact excitation only. For clarity, the normal force and tangential velocity will be assumed time-
constant, in the present simulations. However, nothing would prevent us from imposing any 
time-varying functions ( )NF t  and ( )TV t , or even – as musicians would do – to couple the 
generation of ( )NF t  and ( )TV t  with the nonlinear bowl/puja dynamical simulation, through well-
designed control strategies , in order to achieve a suitable response regime. 
 
The contact model used in all rubbing simulations has a contact stiffness of cK = 106 N/m and a 
contact dissipation of cC = 50 Ns/m, which appear adequate for the present system. However, 
concerning impact simulations, contact parameters ten times higher and lower were also 
explored. The friction parameters used in numerical simulations of rubbed bowls are Sµ  = 0.4,  

Dµ  = 0.2 and C  = 10 (see Figure 5 in [1]). No effort, at this stage, was made to explore other 
friction laws, however the parameters used tentatively here seem realistic enough. 
 
Seven mode pairs were used to describe the dynamics of Bowl 2 (see Table 1 and Figure 4 in 
[1]). An average value of 0.005% was used for all  modal damping coefficients. As discussed in 
Part 1, assuming a perfectly symmetrical bowl, simulations were performed using identical 
frequencies for each mode-pair ( A B

n n
ω ω= ). However, a few computations were also performed 

for less-than-perfect systems, asymmetry being then modelled introducing a difference (or 
“split”) nω∆  between the frequencies of each mode pair.  In order to cope with the large settling 
times that arise with singing bowls, 20 seconds of computed data were generated (enough to 
accommodate transients for all rubbing conditions), at a sampling frequency of 22050 Hz. 

Impact Responses 

Figures 1(a-c) display the simulated responses of a perfectly symmetrical bowl to an impact 
excitation (

0
( )

N
V t  = 1 m/s), assuming different values for the contact model parameters. The 

time-histories of the response displacements pertain to the impact location. The spectrograms 
are based on the corresponding velocity responses. Typically, as the contact stiffness increases 
from 105 N/m to 107 N/m, higher-order modes become increasingly excited and resonate longer. 
The corresponding simulated sounds become progressively brighter, denoting the “metallic” 
bell-like tone which is clearly heard when impacting real bowls using wood or metal pujas. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – Displacement time histories (top) and spectrograms (bottom) of the response of Bowl 2 to impact 
excitation w ith different values of the bowl/puja contact stiffness: (a) 105 N/m ; (b) 106 N/m ; (c) 107 N/m 
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(a)                                                                                              (b) 

Figure 2 – Time-histories, spectra and spectrograms of the dynamical response of Bowl 2 to friction excitation 
when 

NF = 3 N, 
TV = 0.3 m/s : (a) at the bowl/puja travelling contact point; (b) at a fixed point of the bowl’s rim 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                                                              (b) 
Figure 3 – Time-histories, spectra and spectrograms of the dynamical response of Bowl 2 to friction excitation 
when 

NF = 7 N, 
TV = 0.5 m/s : (a) at the bowl/puja travelling contact point; (b) at a fixed point of the bowl’s rim 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                                                              (b) 
Figure 4 – Time-histories, spectra and spectrograms of the dynamical response of Bowl 2 to friction excitation 
when 

NF = 1 N, 
TV = 0.5 m/s : (a) at the bowl/puja travelling contact point; (b) at a fixed point of the bowl’s rim 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 – Radial (green) and tangential (red) interaction forces between the bowl and the  travelling puja: 
(a) 

NF = 3 N, 
TV = 0.3 m/s; (b) 

NF = 7 N, 
TV = 0.5 m/s ; (c) 

NF = 1 N, 
TV = 0.5 m/s  

(b) 

(a) 

(c) 



Friction-Excited Responses  

Figure 2 shows the results obtained when rubbing a perfectly symmetrical bowl near the rim, 
using fairly standard rubbing conditions: NF  = 3 N and TV  = 0.3 m/s. The plots shown pertain to 
the following response locations: (a) the travelling contact point between the bowl and the puja; 
(b) a fixed point in the bowl’s rim. Depicted are the time-histories and corresponding spectra of 
the radial (green) and tangential (red) displacement responses, as well as the spectrograms of 
the radial velocity responses. 
 
As can be seen, an instability of the first "elastic" shell mode (with 4 azimuthal nodes) arises, 
with an exponential increase of the vibration amplitude until saturation by nonlinear effects is 
reached (at about 7.5 s), after which the self-excited vibratory motion of the bowl becomes 
steady. The response spectra show that most of the energy lays in the first mode, the others 
being marginally excited. Notice the dramatic differences between the responses at the 
travelling contact point and at a fixed location. At the moving contact point, the motion amplitude 
does not fluctuate and the tangential component of the motion is significantly higher than the 
radial component. On the contrary, at a fixed location, the motion amplitude fluctuates at a 
frequency which can be identified as being four times the spinning frequency of the puja: 

( )4 4 2fluct puja TV φΩ = Ω = . Furthermore, at a fixed location, the amplitude of the radial 
motion component is higher than the tangential component. 
 
The animations of the bowl and puja motions enable an interpretation of these results. After 
synchronisation of the self-excited regime, the combined responses of the first mode-pair result 
in a vibratory motion according to the 4-node modeshape, which however spins, “following” the 
revolving puja. Furthermore, synchronisation settles with the puja interacting near a node of the 
radial component, corresponding to an anti-nodal region of the tangential component – see 
Figure 4 and Equations (5,6) in [1]. In retrospect, this appears to make sense – indeed, because 
of the friction excitation mechanism in singing bowls, the system modes self-organize in such 
way that a high tangential motion-component will arise at the contact point, where energy is 
inputted. 
 
At any fixed location, a transducer will “see” the vibratory response of the bowl modulated in 
amplitude, as the 2j alternate nodal and anti-nodal regions of the “singing” modeshape revolve.  
For a listener, the rubbed bowl behaves as a spinning quadropole – or, in general, a 2j-pole 
(depending on the self-excited mode j) – and the radiated sound will always be perceived with 
beating phenomena, even for a perfectly symmetrical bowl. Following the previous remarks, the 
out-of-phase envelope modulations of the radial and tangential motion components at a fixed 
location, as well as their amplitudes, can be easily understood. Indeed, all necessary insight 
stems from Equations (5,6) and the first plot of Figure 4, in Part 1.  
 
It should be noted that our results basically support the qualitative remarks provided by 
Rossing, when discussing friction-excited musical glass-instruments (see [2], pp. 185-187 – the 
only reference, to our knowledge, where some attention has been paid to these issues). 
However, his main point “The location of the maximum motion follows the moving finger around 
the glass” may now be further clarified: the “maximum motion” following the exciter should refer 
in fact to the maximum tangential motion component (and not the radial component, as might be 
assumed). 
 
Before leaving this example, notice in Figure 5(a) the behaviour of the radial and tangential 
components of the bowl/puja contact force, on several cycles of the steady motion. The radial 
component oscillates between almost zero and the double of the value NF  imposed to the puja,  
and contact is never disrupted. The plot of the friction force shows that the bowl/puja interface is 
sliding during most of the time. This behaviour is quite similar to what we observed in 
simulations of bowed bars, and is in clear contrast to bowed strings, which adhere to the bow 
during most of the time – see [3], for a detailed discussion. The fact that sticking only occurs 
during a short fraction of the motion, justifies in a way the simplified friction model presented in 
Part 1, which has been used for the present computations. 
 



Figure 3 shows the results for a slightly different regime, corresponding to rubbing conditions: 

NF  = 7 N and TV  = 0.7 m/s. The transient duration is smaller than in the previous case (about 5 
s). Also, because of the higher tangential puja velocity, beating of the vibratory response at the 
fixed location also displays a higher frequency. This motion regime seems qualitatively similar to 
the previous example, however notice that the response spectra display more energy at higher 
frequencies, and that is because the contact between the exciter and the bowl is periodically 
disrupted, as shown in the contact force plots of Figure 5(b). One can see that, during about 
25% of the time, the contact force is zero. Also, because of moderate impacting, the maxima of 
the radial component reach almost 3 NF . Both the radial and friction force components are 
much less regular than in the previous example, but this does not prevent the motion from being 
nearly-periodic. 
 
Figure 4 shows a quite different behaviour, when NF  = 1 N and TV  = 0.5 m/s. Here, a steady 
motion is never reached, as the bowl/puja contact is disrupted whenever the vibration amplitude 
reaches a certain level. As shown in Figure 5 (c), severe chaotic impacting arises (the amplitude 
of the radial component reaches almost 7 NF ), which breaks the mechanism of energy transfer,  
leading to a sudden decrease of the motion amplitude. Then, the motion build-up starts again 
until the saturation level is reached, and so on. As can be expected, this intermittent response 
regime results in curious sounds, which interplay the aerial characteristics of “singing” with a 
distinct “ringing” response due to chaotic chattering. Anyone who ever attempted to play a 
Tibetan bowl is well aware of this sonorous saturation effect, which can be musically interesting, 
or a vicious nuisance, depending on the context. 
 
To get a clearer picture of the global dynamics of this system, Figures 6 and 7 present the 
domains covered by the three basic motion regimes (typified in Figures 2-4), as a function of  

NF  and TV : (1) Steady self-excited vibration with permanent contact between the puja and the 
bowl (green data); (2) Steady self-excited vibrations with periodic contact disruption (yellow 
data); (3) Unsteady self-excited vibrations with intermittent amplitude increasing followed by 
attenuation after chaotic chattering (orange data). Note that, under different conditions, the self-
excitation of a different mode may be triggered – for instance, by starting the vibration with an 
impact followed by rubbing. However, such procedures and results will not be discussed here. 
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(a)                                                                                            (b) 

Figure 6 – (a) Initial transient duration and (b) percentage of time with no bowl/puja contact,  
as a function of 

NF  and 
TV  

 
Figure 6(a) shows how the initial transient duration depends on NF  and TV . In every case, 
transients are shorter for increasing normal forces, though such dependence becomes almost 
negligible at higher tangential velocities. At constant normal force, the influence of TV  strongly 
depends on the motion regime. Figure 6 (b) shows the fraction of time with motion disruption. It 



is obviously zero for regime (1), and growing up to 30 % at very high excitation velocities. It is 
clear that the “ringing” regime (3) is more prone to arise at low excitation forces and higher 
velocities. 
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(a)                                                                                           (b) 

Figure 7 – (a) Radial and (b) Tangential displacement amplitude  (RMS) at the bowl/puja travelling contact point, 
as a function of 

NF  and 
TV  

 
Figures 7(a) and (b) show the root-mean-square vibratory amplitudes at the traveling contact 
point, as a function of NF  and TV . Notice that the levels of the radial components are much 
lower than the corresponding levels of the tangential component, in agreement with the 
previous comments. These plots show some dependence of the vibratory level on the response 
regime. Overall, the vibration amplitude increases with TV  for regime (1) and decreases for 
regime (3). On the other hand, it is almost independent of NF  for regime (1), while it increases 
with NF  for regime (3). 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 – Experimental measurement of the radial acceleration at a point of the bowl rim  
 due to friction excitation by a rubber puja 

 
The last item in this section, Figure 8, presents an experimental acceleration response of a 
rubbed bowl, under uncontrolled (but typical playing) conditions. This plots many of the features 
highlighted by the numerical simulations. 

Non-Symmetrical Bowls 

Figures 9(a) and (b) enable a comparison between the impact responses of perfectly 
symmetrical and a non-symmetrical bowls. Here, the lack of symmetry has been simulated by 
introducing a frequency split of 2% between the frequencies of each mode-pair (e.g.              

nω∆  = 0.02 nω ), all other aspects remaining identical – such crude approach is adequate for 
illustration purposes.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                                                              (b) 
Figure 9 – Dynamical responses of an impacted bowl, at the impact location:  

(a) Axi-symmetrical bowl (0% frequency split); (b) Non-symmetrical bowl with 2% frequency split 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                                                              (b) 

Figure 10 – Dynamical response of a rubbed bowl with 2% frequency split when 
NF = 3 N, 

TV = 0.3 m/s :  
(a) at the bowl/puja travelling contact point; (b) at a fixed point of the bowl’s rim 



Notice that the symmetrical bowl only displays radial motion at the impact point  (as it should), 
while the unsymmetrical bowl displays both radial and tangential motion components due to the 
different propagation velocities of the travelling waves excited. On the other hand, one can 
notice in the response spectra of the unsymmetrical system the frequency-split of the various 
mode-pairs. This leads to beating of the vibratory response, as clearly seen on the 
corresponding spectrogram. 
 
Figure 10 shows the self-excited response of the symmetrical bowl, when rubbed at NF  = 3 N  
and TV  = 0.3 m/s. Notice that sound beating due to the spinning of the response modeshape 
dominates, when compared to effect of modal frequency-split. Interestingly, the slight change in 
the modal frequencies was enough to modify the nature of the self-excited regime, which went 
from type (1) to type (3). This fact shows the difficulties in mastering these apparently simple 
instruments. 
 
 
CONCLUSIONS 
 
The numerical simulations presented in this paper show some light on the sound-producing 
mechanisms of Tibetan singing bowls. Both impact and friction excitations have been 
addressed, as well as perfectly-symmetrical and less-than-perfect bowls (a very common 
occurrence). For suitable friction parameters and for adequate ranges of the normal contact 
force NF  and tangential rubbing velocity TV  of the puja, instability of a shell mode (typically the 
first "elastic" mode, with 4 azimuthal nodes) arises, with an exponential increase of the vibration 
amplitude followed by saturation due to nonlinear effects.  
 
Because of the intimate coupling between the radial and tangential shell motions, the effective 
bowl/puja contact force is not constant, but oscillates. After vibratory motions settle, the 
excitation point tends to locate near a nodal region of the radial motion of the unstable mode, 
which corresponds to an anti-nodal region of the friction-excited tangential motion. This means 
that unstable modes spin at the same angular velocity of the puja. As a consequence, for the 
listener, sounds will always be perceived with beating phenomena. However, for a perfectly 
symmetrical bowl, no beating at all is generated at the moving excitation point. 
 
Typically, the transient duration increases with TV  and decreases for higher values of NF . The 
way vibratory amplitudes depend on TV  and NF  changes for different response regimes. Three 
basic motion regimes were obtained in the present computations, depending on NF  and TV :  
(1) Steady self-excited vibration with permanent contact between the puja and the bowl; (2) 
Steady self-excited vibrations with periodic contact disruption; (3) Unsteady self-excited 
vibrations with intermittent amplitude increasing followed by attenuation after chaotic chattering.  
 
The first motion regime offers the “purest” bowl singing. Our results suggest that higher values 
of NF  should enable a better control of the produced sounds, as they lead to shorter transients 
and also render the system less prone to chattering. 
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