
 

 
 
 
 

UN MODELO DE SIMULACION DE ECOGRAMAS EN RECINTOS PARA 
EXCITACIONES CON IMPULSOS DEBILMENTE ALINEALES 

 
PACS: 43.55.Br 
 
Antonio Moreno; Rosa Mª Rodríguez Alves, Mª José Fernández, Francisco Simón, Carlos de la 
Colina 
Instituto de Acústica - CSIC 
Serrano 144, 28006 Madrid 
E-mail: amoreno@ia.cetef.csic.es 
 
 
 
 
 
 
 
 
 
 
ABSTRACT 
A new model to account for spatial and time distribution of weakly sound sources is presented. 
This model is based on an additional energy decay accounted by means of a nonlinearity 
parameter and on the main ideas involved in classical image source methods. Echograms of 
arbitrary signals can then be computed by using several partial ‘energy based impulse 
responses’ covering the frequency band of exciting signal. Computed results are compared to 
experimental ones obtained on a rectangular enclosure. 
 
 
RESUMEN 
Se presenta un nuevo modelo para similar distribuciones espaciales y temporales de señales 
débilmente alineales. Se basa en un factor de amortiguamiento función de un factor de 
alinealidad de nivel y usa la teoría de imágenes. Los ecogramas de una señal arbitraria pueden 
calcularse mediante las respuesta impulsivas parciales en un número suficiente de bandas de 
frecuencia que cubran el espectro de la señal. Se comparan resultados numéricos con 
resultados experimentales obtenidos en un recinto rectangular. 
 
 
1. INTRODUCTIÓN 
 
After Sabine[1] reverberation time of an enclosure is defined from the decay of  steady state 
acoustic signals suddenly interrupted, usually white, pink noise filtered in frequency bands and 
burst tones. Later and mainly since the memorable work of Schroeder [2] pistol or crack reports, 
and electric sparks (mainly in scale models) are being used commonly not only to determine 
reverberation time but also to investigate most general acoustic properties of enclosures [3]. 
The proximity of acoustic responses obtained with that type of excitation signals to the impulse 
response of enclosures (for omnidirectional sources), joined to the rather simple and ease 
experimental arrangements and handling involved add further attractive to that impulsive 
signals. 
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On the other hand, crack reports of fractions of a gram of common powder give acoustic signals 
that in fact are within the range of level nonlinearity [4]. That nonlinearity leads to experimental 
results that can differ significantly from those of linear range. 
 
Along this line in a previous work presented last year in the Acustica08 Congress, held in 
Coimbra [5] authors presented a theory of reverberation for weak nonlinear level sound signals. 
An equation relating ‘nonlinear’ reverberation time with reverberation time defined by Eyring’s 
formula through a parameter of nonlinearity was derived. 
 
In this paper main aspects of ‘weakly nonlinear’ impulse responses of enclosures, along the 
lines of image method, will be described and some echograms derived from that model 
compared with experimental results in a rectangular enclosure. Sound level variation with 
distance, a primary quantity in acoustic characterisation of families of enclosures [6] will be 
mainly dealt with.   
 
 
2. ANTECEDENTS AND THEORETICAL FOUNDATIONS 
 
2.1. Main aspects of nonlinearities of sound pulses caused by crack reports and electric 
sparks. A criterion to detect intensity nonlinearities 
 
Perhaps the two more significant aspects of nonlinearities o sound pulses dues to crack reports 
and electric sparks are: a) deviation from 1/r law of spherical propagation in free field, and b) 
presence of significant spectral components far beyond the limit straight line of -6 dB/octave 
slope proper of linear pulses [7], [8]. Both aspects can serve to detect nonlinearities in sound 
pulses but to our actual purposes a rather simple criterion derived from a) has been used. 
According to this criterion [4] the variation with distance (r) of either pulse pick value (in fact the 
product r pp)  or total sound intensity of non linear acoustic pulses deviate from a straight line of 
negative slope. Calling β to the excess of the exponent of distance r, over the usual value 2 for 
linear range, and m to the air attenuation, that is assumed to be equal to the linear range given 
the limitation to weak nonlinearities, the equation of the above criterion can be written: 
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where p1 is the pic pressure at distance r1. A quite similar equation holds in terms of I(r) the 
total intensity of the pulse. Values of β up to 1 and more are typical of crack reports and up to 
0.5 of electric sparks used in scale models. 
 
2.2. Image models  
 
Image theory has been and is being used as a powerful tool in predictive models and softwares 
to approach acoustic properties of rooms [9], [10], mainly combined with ray tracing methods in 
more recent models [11], [12]. Though modern computers have increased memory and speed 
up to limits unattended only a few years ago, the main problem continues to be the time 
consumed, and limitations to low orders of reflection have been introduced without significant 
loss of precision [13], [11]. Additional problems arise from wall (absorption and diffusion) 
coefficients and phases not yet solved. Nevertheless the usefulness of acoustic features 
afforded by these methods in common design practice of a large variety of rooms justifies in 
itself the actuality and general acceptance of these methods and models. 
 
Image patterns and reflection order become crucial parts in the above models to reduce 
computing time mainly by suppression of invalid image sources and limiting the procedure to 
low order reflections.  
 
2.3. An image model under weakly nonlinear conditions 
 
Along the lines used in a previous work [5] it is possible to derive a compact formula to evaluate 
the sound level in a enclosure excited by weakly nonlinear signals and steady state conditions. 
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But like under linear range a level independent of distance results and our interest focus on 
variations of sound level with distance that have been detected by various authors [3], [6], the 
above numeric methods make evident. Experimental results in scale models with weakly 
nonlinear signals showed unexpectedly high attenuation with distance. They are suspected to 
be dues to nonlinearities of the excitation signal. This excess attenuation should be 
compensated in applications in the linear range. 
 
Therefore, following hypothesis assumed on a previous work [5], our key energy algorithm on a 
receiving point related to an image source of an original weakly nonlinear source is: 
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where β is the nonlinear parameter, ris is the distance from image source is to the receiver and 
αj=1,2,. . ., is are the absorption coefficients of the wall set involved in the path ;  is = 0 for the 
real source (direct sound).  
 
This equation, that focuses on detailed information of intensity and time distribution of echoes, 
is able to render for enclosures excited by weakly nonlinear signals: a) the time history of 
energy variations and b) the energy dependence along distance to the source for given 
trajectories. 
 
2.4. Variations concerning sound level distribution 
 
The set of distances of image sources to the receiver, ris, is completely determined by shape 
and dimensions of the enclosure. Although on average it is expected that enclosures of the 
same volume have quite similar ‘echograms’, some acoustic properties, manly those perceptive 
properties depending on the initial echogram pattern can differ strongly from an enclosure to 
another. Here, as already mentioned, the spatial distribution of energy is the main goal.  
 
Choosing several different straight paths, the energy of echograms computed along a set of 
appropriate points are compared for linear and weakly nonlinear conditions. We are interested 
in knowing if results for different trajectories converge to a significant average. If so this average 
represents the variation of sound level with distance to the source of that particular enclosure. A 
priori it can be expected such result for ‘diffuse enclosures’ with homogeneously distributed 
absorption. In the opposite situation are enclosures where every trajectory has its own ‘energy 
distribution law’.  
 
In this way enclosures having sufficient nominal acoustic proximity can be analysed to confirm 
the existence of common ‘laws’ of sound level variation with distance, that in turn are ‘equally 
affected’ when passing from linear to weakly nonlinear conditions (of excitation signal levels). 
 
In this work, and to avoid limitations due to the suppression of high order images and inclusion 
of ‘impossible image sources’ as well as to simplify computing time, rectangular enclosures will 
be considered. These volumes have ‘exact patterns’ of image sources that can be computed up 
to very high orders within a few ms. It holds similarly for straight prisms of triangular base.  
 
Being so big the amount of parameters to be considered (f.e. size, shape, air absorption, wall 
absorption distribution, etc.), not yet sufficiently clarified, and the practical usefulness aimed in 
this work, computings will be limited to a simple enclosure and delayed to the appropriated point 
where they will be compared to experimental results carried out on a scale model. 
 
 
3. COMPARISON OF COMPUTED AND EXPERIMENTAL RESULTS 
 
3.1 Scale model, experimental set up, and typical echograms 
 
A rectangular enclosure 1.6 x 0.5 x 0.29 m, was constructed on 2.5 inches wood agglomerate 
finished by melamine layers. Two 1/4 inches condenser microphones were used. One 
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microphone placed at a fixed reference point and the other at successive reception points 
distributed along two nominal trajectories: a trajectory along the longitudinal plane of symmetry, 
0.12 m height over the floor and other trajectory along the major diagonal and same height. An 
omnidirectional spark device was placed at the nominal source location of each trajectory. 
Signals picked up by micros feed a two channel FFT based signal analyzer (Data 600) with a 
dynamic range of 100 dB [14]. Digital files where then converted into compatible matlab and J 
files.  
 
3.2. Matching times of first order experimental images 
 
The first step in comparing computed and experimental echograms on nonlinear signals is to 
measure sound speed. It plays a main role in time sequences of echoes. Careful measurements 
by using the same excitation spark pulses under the above mentioned experimental 
temperature, atmospheric pressure and relative humidity gave the value 347.0 m/s. 
 
Then the experimental (or the computed) echogram should be delayed to obtain the 
superposition of direct sound (first isolated pulses). Pulses of the first order image sources (6 in 
our case of a rectangular enclosure) of one set should then match each other. Some changes of 
coordinates of source and reception points in computing program, bounded to error limits in 
positioning source and micros in the experimental set up, lead quite easily to reasonably good 
time matchings. The good this fitting be made the better would be the matching between 
computed and experimental echograms. Fig.1 shows the cases of points p10, p12 and p17.  

     
Figure 1. Matching arrival times of computed image sources (blue: direct; green: first order; 
yellow: second and higher orders) to experimental echograms (red) 
 
3.3. Determination of wall absorption, nonlinear parameter and air absorption 
 
Air absorption can be obtained from standard ISO 9613-1. See table 1. 
 
When comparing computed and experimental echograms it is convenient to obtain values of β 
from sets of echograms obtained at different distances from the source taking only the direct 
part of the signal. Values should be duly corrected to compensate potential variations of the 
excitation signals at every reception point. Signals picked up at a fixed reference position 
simultaneously to the responses at different distances can serve to that purpose. For a set of 
reception points p10, p11, p12, p13, p14, p15,p16 and p17, along a straight line 0.12 m from the 
floor, in the longitudinal plane of symmetry of the enclosure, at nominal distances 0.201, 0.251, 
0.351, 0.550, 0.748, 0.949, 1.154, 1.351 from the source located to 0.1 m from the nearest wall, 
the set of values in table 1 were obtained. 
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If absorption coefficients are known only for linear range, equation  
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can be used to obtain the corresponding ones to be used: apparent absorption coefficients 
under weakly nonlinear conditions [5]. Otherwise they can be determined from experimental 
echograms by conventional methods.  
 
 

Frq. 
band 

1.25 kHz 2.5 kHz 5 kHz 10 kHz 20 kHz 40 kHz Complete 
signal 

M 0.0023 0.00605 0.0196 0.0604 0.1343 0.1979 0.188 
β 0.3156 0.1066 0.0800 0.0595 0.0715 0.1728 0.158928 

αEy,med 0.013 0.013 0.024 0.026 0.029 0.067 0.066 
Table 1. Values of m,b and a in our experimental arrangement 

 
For the complete signal (non filtered), for example, previous values can be optimized by means 
of a fitting function that simultaneously takes into account the amplitudes of direct and first 
echoes for the ensemble of reception points. Figure 3.2.2 summarizes the final result. 
  

 
Figure 3.2.2. Global optimization of m, β and α for the complete signal in experimental  

study to match simultaneously amplitudes of direct signal and first two echoes 
 
3.4. Comparing computed and experimental echograms 
 
Te convolution of the excitation signal with the ‘energetic approach of impulse response’ results 
in turn a reasonably good approach to experimental echograms. Figure 3.4.1 gives the results 
for points p10, p12 and p17 for the complete signal. 
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Figure 3.4.1. Comparison of experimental and computed echograms in points p10, p12 and p17 

for the complete signal.  
 

It is to mention in point 17, that the third of first order echoes is more intense than the two 
previous ones because the convolution process accounts for the negative effect of the tails of 
preceding echoes, given its relative nearness. 
 
3.5. Sound levels as a function of distance to source 
 
Weak nonlinearities of the excitation signal level cause changes on spatial sound level 
distribution with regard to linear range. In many problems it comes important to account these 
changes as a function of distance. Obviously that variation is mainly dependent on the acoustic 
characteristics of enclosures and sometimes it is so high that averages and other statistical 
estimators are nonsense.  
 
But when shapes and sound absorption are quite similar, averages and deviations are proper 
parameters of sound levels distributions. In our case of rectangular enclosures variation of 
sound level with distance becomes plenty of sense and differences between linear and 
nonlinear ranges present regular evolutions as a quite simple function of the nonlinear 
parameter.  
 
Figure 3.5.1 gives differences on sound level between nonlinear and linear excitation signals as 
a function of distance for different frequencies and combinations of air absorption, wall 
absorption coefficient and nonlinear parameter (se table 1) for a path along the longitudinal 
plane of symmetry. Derivation of this figure and algorithm implies comparison with experimental 
results obtained in the scale model. 
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Figure 3.5.1. Differences on sound level as a function of distance in rectangular enclosures 

 
The predominant effect of b is very clear. However the remainder parameters and mainly the 
shape and size of the enclosure also play a role conforming the basic shape represented by the 
polynomial of coefficients 0.086, 0.198 and –0.129. 
 
4. CONCLUSIONS 
 
A new model of sound propagation in enclosures for sound signals with weakly nonlinear level 
has been presented. It considers spatial distribution of sound level and is a complement of a 
previous one devoted to time variations (mainly reverberation).  
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Equation :  ΔLp= - 5β lgr – (0.086 + 0.198 lgr – 0.129.(lgr)2).(β/ 0.0595) 
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