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Abstract 
This paper is concerned with theoretical study of high-amplitude shock-free acoustic field in a gas-filled piston-
driven cylindrical resonator where the diameter exceeds its height in a substantial way. Due to this geometry, 
only radial modes are driven. Since these modes are non-equidistant, resonance conditions are not fulfilled for 
higher harmonics of the acoustic field resulting from nonlinear effects, they are suppressed, the acoustic 
saturation effect is avoided and Q-factor of the resonator increases. Such a resonant cavity behaves similarly as a 
variable-cross-section resonator,  but the geometry is much simpler which gives rise to its greater utilization e.g. 
in ultrasonic processing applications. For the purpose of numerical simulation of the problem, set of Navier-
Stokes equations formulated in cylindrical coordinates is used. The equations are integrated by using of a central 
semi-discrete difference scheme, characteristic boundary conditions are implemented. Numerical results confirm 
excitation of shock-free high-amplitude waveform in the resonant cavity. 
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1 Introduction 

Nowadays,  we can observe rapid development of nonlinear acoustics that is the branch of acoustics 
concerned with acoustic waves, whose amplitudes cannot be treated as infinitesimally small ones. This 
situation is caused by wide application area of these waves and also by fast development of powerful 
computer technology allowing their theoretical study. 
 One of the application areas is connected with utilization of high-amplitude acoustic standing 
waves generated in resonators driven by means of vibrating piston or inertial force. When a standing 
wave is driven into high amplitude, nonlinear effects (convection, nonlinear relation between density 
and pressure) cause distortion of originally harmonic wave. As the thermo-viscous attenuation is 
proportional to the square of frequency, dissipation of acoustic energy increases in a substantial way 
due to excitation of higher harmonics and acoustic pressure amplitude is no longer proportional to 
amplitude of driving.  
 A few techniques have been proposed for suppression of nonlinear effects and thus 
improvement of the Q-factor of acoustic resonators. One of them utilizes shaped acoustic resonators, 
where higher eigenfrequencies are not integer multiples of the eigenfrequency fundamental, see e.g. 
[1-3]. Due to this fact, resonance conditions are not fulfilled for the higher harmonics and their driving 
is thus ineffective. Different approach is based on the technique of multifrequency driving, see e.g. 
[4, 5]. It is shown there that utilization of suitably chosen second (or even higher) harmonics of 
driving signal can result in suppression of cascade processes of higher harmonics generation. 
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 Philosophy of this work issues from the firstly mentioned approach (shaped resonators),  
whereas it overcomes one its disadvantage - complicatedness of the acoustic resonator cavity. Here a 
thin, piston-driven cylindrical resonator is used, nevertheless, transversal mode is driven instead of a 
mode longitudinal. As higher eigenfrequencies are not integer multiples of the eigenfrequency 
fundamental for cylindrical waves, resonance conditions are not fulfilled for higher harmonics and 
thus appearance of shock wave and intense nonlinear dissipation can be avoided. Geometry of the 
problem is shown in Figure 1. 
 

 
Figure 1 – Geometry of the problem formulated using dimensionless coordinates. 

2 Model equations 

Model equations of nonlinear acoustics are represented by nonlinear partial differential equations. For 
the sake of simulation of the above mentioned problem, the appropriate model equation must be a 
multidimensional one, some of them have recently been proposed in literature, see e.g. [6-8]. Here, set 
of dimensionless equations issuing from Navier-Stokes equations is used. With the dimensionless 
quantities 
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where ,  z r  are axial and radial coordinates, l  is length of the resonant cavity, t  is time, ω  is driving 
frequency, 0,  ρ ρ  are the total and ambient fluid density, ,  u v  are the axial and radial components of 
acoustic velocity, 0c  is the small-signal speed of sound and ,  p e  are the acoustic pressure and energy 
respectively,  the set model equations reads 
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The equations are supplemented by the pressure-energy relation 2 2( 1)[ ( ) / 2],P E U Vγ= − − Λ +  
where γ  is the ratio of specific heats.  Here 0/ω ωΩ =  is ratio of the driving frequency and 

frequency of the fundamental longitudinal mode 0 0 /c lω π=  and 2
0 0 0/G b cω ρ=  is the attenuation 

parameter where b  is the diffusity of sound. 
 Left sides of the equations (1) are formulated in the conservative form, the right sides 
represent geometrical sources (due to formulation of the problem with use of curvilinear coordinates) 
and dissipative terms. Model of the acoustic energy dissipation process is in the equations (1) 
somewhat simplified, it is assumed that the acoustic field is non-vortical (the terms containing rotation 
of velocity are omitted) and the small third-order terms in the energy transfer equation are dropped. 
All the dissipation mechanisms are included in heightened value of the parameter G . 
 For the purpose of numerical integration of the set (1), high-resolution second-order central 
semi-discrete difference scheme [9] was used. The characteristic boundary conditions were 
implemented as the adiabatic free-slip ones [10] (hard resonator's walls at 0R R= , 1Z = ), time-
varying position of vibrating piston (boundary at 0Z = ) was implemented to avoid nonphysical 
matter flux through the boundary. For 0R = , symmetry of the problem was utilized. 

3 Eigenfrequencies of a cylindrical resonator 

In order to obtain the first insight into the problem, the equations (1) can be linearized and solved 
analytically.  However, it is simpler and more straightforward to issue from linearized wave equation 
that can be written in dimensionless form  
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where 0( , , ) ( , )exp(i ) /R Z T R Z T c lϕ πΦ = Φ =  is dimensionless velocity potential and i 1.= −  
Solution of the Eq. (2) can be easily found using the Fourier series. Using homogeneous Neumann 
boundary conditions at the walls and  
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at the piston wall ( 0Z = ), where ( )pU R  is distribution of the vibration velocity, the solution can be 
written in the form 
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where 0J ()  is the first-kind zero-th order Bessel function, kν  represents the k-th root of equation 

1J ( ) 0,ν =  2 2 2 2 2
0(1 i ) /k kG Rβ π ν= Ω − Ω −  and kα  are coefficients of  the Bessel-Fourier 

decomposition of PU ,  Individual eigenfrequencies can be found from the condition 
2 2 2 2 2 2

0/k R nπ ν πΩ − = , where n  is an integer, in form  

 2 2 2 2
, 0/ .n k kn Rν πΩ = +  (4) 

This equation shows that in the case of the pure longitudinal modes ,0 1,2,3,...nΩ = , which means that 
the higher eigenfrequencies are the integer multiples of the eigenfrequency fundamental. For driving 
of these modes, it must be fulfilled that 0 0α ≠ . In the case of the pure transversal modes, Eq. (4) 
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shows that 0, 0/ ,  0,k k R kν πΩ = >  which means that the higher eigenfrequencies are not integer 

multiples of the eigenfrequency fundamental. For example, if 0 6R =  (radius of the resonator is six 
times greater than its length), we obtain 
 0, 0.203278, 0.372188, 0.539719, 0.706844,...kΩ =  

For driving of the k-th transversal mode, it must be fulfilled that 0.kα ≠  It should also be noted that 
for reaching high-amplitude acoustic field in the k-th transversal mode, value of the coefficient kα  
must be maximized. For example, if the velocity of the left resonator's wall (piston) is given as 
 0( ) H( );    0,1 ,p pU R A pR R p= − ∈  (5) 
where Ap, p are constants, H is the Heaviside function and the 1st transversal mode is driven, the 
maximum value for 1α  is obtained for 
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where 1μ  is the 1st root of equation 0J ( ) 0μ = . 

4 Numerical results 

Some numerical results obtained by means of numerical integration of Eqs. (1) are presented in this 
section. For all the cases, hard-walled piston-driven cylindrical resonator filled with air at ambient 
room conditions is assumed. Parameter G accounting for all the attenuation processes was set to 

310G −= . Two geometrical configurations are compared here. Firstly, it is a disc-shaped resonator 
with 0 6,R =  where the 1st transversal mode is driven using piston velocity distribution 

0( , ) H(0.625 )sin ,p pU R T A R R T= −  which is close to "the optimal driving". And secondly, it is an 

elongated thin resonator with 0 1/ 6,R =  where the 1st longitudinal mode is driven using piston 
velocity distribution ( , ) sin .p pU R T A T=  Acoustic pressures presented in the following figures are 
"measured" at the center of vibrating piston ( 0, 0R Z= = ). 
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Figure 2 – Acoustic pressure in the case of longitudinal and transversal mode driving. 

 Figure 2 shows comparison of time courses of longitudinal ( 1Ω = ) and transversal 
( 0.2064Ω = ) mode pressures for the same driving amplitude 45 10pA −= ×  at the resonance 



 Acústica 2008, 20 - 22 de Outubro, Coimbra, Portugal  
 

 
 

5

conditions. It can be seen that the transversal mode attains substantially higher amplitude compared to 
the highly distorted longitudinal mode, where shock wave appears. 
 Figure 3 shows comparison of amplitude characteristics (the 1st harmonics of acoustic 
pressure) in the case of longitudinal and transversal mode driving at resonance conditions. As it is 
common in nonlinear systems, the pressure amplitudes are not proportional to amplitude of driving.  
This situation is caused by excitation of higher harmonics that undergo stronger the nonlinear 
attenuation that is proportional to the square of frequency. 
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Figure 3 – Amplitude of the 1st harmonics of pressure with respect to driving velocity in the case of 

longitudinal and transversal mode driving. 
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Figure 4 – Shift of resonance frequency as a function of driving velocity amplitude (transversal mode). 

 Figure 4 shows dependence of transverse-mode resonance frequency on amplitude of driving. 
The linear theory predicts this resonance frequency as 0.2033.LINΩ =Ω ≈  It can be seen from the 
figure that the nonlinear resonance frequency increases with amplitude of driving. Such a behavior is 
due to the mechanical analogy called the hardening-spring resonance frequency shift. This resonance 
frequency shift is not observed for the case of longitudinal mode driving. 

5 Conclusions 

It was shown in the paper that driving of transversal modes in a disc-shaped resonator can be used for 
generation of high-amplitude acoustic fields without shock-wave appearance.  These acoustic fields 
are substantially stronger than the fields obtained in constant-cross-section resonators with 
longitudinal modes driven. The idea of this approach is similar to resonance macrosonic synthesis, 
where non-equidistant eigenfrequencies distribution is attained by using variable-cross-section 
cavities.  However, geometry of the problem is substantially simpler in this case that may be 
interesting fact in the case of possible application. 
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