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RESUMEN: Este trabajo se enfrenta con la resolución numérica del comportamiento acústico de materiales 
porosos con matriz sólida elástica. Suponiendo una estructura periódica, usamos nuevos modelos poroelásticos 
obtenidos mediante técnicas de homogeneización. Con el objetivo de calcular los coeficientes en estos nuevos 
modelos, se resuelven problemas de contorno en la celda elemental del medio poroso. Finalmente, centramos 
nuestra atención en los materiales poroelásticos no disipativos con poros abiertos y proponemos un método de 
elementos finitos para calcular la respuesta a una excitación harmónica de una cavidad tridimensional que 
contiene un fluido y un material poroelástico. El elemento finito usado para el fluido es el elemento de orden 
más bajo de la familia introducida por Raviart y Thomas que evita los modos espúreos mientras que, para el 
campo de desplazamientos en el medio poroso, se usa el “mini elemento” con el objetivo de obtener un método 
estable.  
 
 
ABSTRACT: This communication deals with the numerical solution of the acoustical behavior of elastic porous 
materials. Assuming a periodic structure, we use new poroelastic models obtained by homogenization 
techniques. In order to compute the coefficients in these new models, we solve boundary-value problems in the 
unitary cell. Finally, we focus our attention on non-dissipative poroelastic materials with open pore and propose 
a finite element method in order to compute the response to a harmonic excitation of a three-dimensional 
enclosure containing a free fluid and a poroelastic material. The finite element used for the fluid is the lowest 
order face element introduced by Raviart and Thomas that avoids the spurious modes whereas, for displacements 
in porous medium, the “mini element” is used in order to achieve stability of the method. 
 
 
1. INTRODUCTION  
 
Theory for mechanical behavior of poroelastic materials was established by Biot [5], when the 
porous elastic solid is saturated by a viscous fluid. However, when analyzing Biot's model, 
coefficients are not properly defined and, in general, their determination is not clear although 
several experimental procedures have been provided, as it can be seen in Biot and Willis [6]. 
Derivation of macroscopic models for poroelastic materials depends strongly on connectivity 
of the fluid part. Fundamental references are papers by Gilbert and Mikelić [9] and by 
Clopeau et al [7] where the classical dissipative Biot's model was derived by homogenization 
using two-scale convergence methods. They also contain a number of references to papers on 
dissipative Biot's law. Moreover, the same procedure has been applied, for the first time, in 
Ferrín and Mikelić [8] to derive macroscopic models for non-dissipative poroelastic material 
with open or closed pore. 
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Concerning numerical simulation, an increasing number of papers can be found for the two 
cases of rigid and elastic skeleton. The lowest order finite method introduced by Raviart and 
Thomas has been applied in Bermúdez et al [3] to the case of porous media with rigid 
skeleton to solve, in particular, the response problem when using both a Darcy's like model 
and the Allard-Champoux model. With respect to the case of elastic skeleton, papers by 
Panneton and Atalla [10], or Atalla et al [2], among others, are examples of application of 
finite element methods to sound propagation in poroelastic media by using Biot's model. 
We only consider the case of elastic frame porous material. The non-dissipative model that 
we shall take into account has been derived in Ferrín and Mikelić [8] for open and closed 
pores. The advantages exhibited by this model with respect to classical Biot's model lies in 
that we know mathematical expressions allowing us to compute their coefficients. 
 
2. STATEMENT OF THE PROBLEM 
 
In the rest of the paper we consider a coupled system consisting of an acoustic fluid (i.e. 
inviscid compressible barotropic) in contact with an elastic porous medium. Both are enclosed 
in a three-dimensional cavity with rigid walls except one on which a harmonic excitation is 
applied. Let FΩ  and AΩ  be the domains occupied by the fluid and the porous medium, 
respectively (see Figure 1). 

 
Figure 1 – 3D domain and vertical cut. 

 
The boundary of F AΩ ∪Ω , denoted by Γ , is the union of two parts, WΓ  and EΓ , where WΓ  
denotes the rigid walls of the cavity. Let ν be the outward unit normal vector to Γ . The 
interface between the fluid and the porous medium is denoted by IΓ  and n is the unit normal 
vector to this interface pointing outwards AΩ . In order to study the response of the fluid-
porous coupled system subject to an harmonic excitation acting on EΓ , we consider the model 
for open pore non-dissipative poroelastic media. Firstly, we recall that governing equations 
for free small amplitude motions of an acoustic fluid filling FΩ  are given, in terms of 
displacement and pressure fields, by 
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F
F F F2 grad 0 in ,P

t
ρ ∂

+ = Ω
∂
U  (1) 

 2
F F F Fdiv  in ,P cρ= − ΩU  (2) 

 
where FP  is  pressure, FU  is displacement field, Fρ  is density and c is acoustic speed. 
Secondly, if we denote by AU  and AP  the macroscopic displacement and pressure fields in 
the porous medium, the equations describing small motions are, 
 

 ( ) ( )( ) ( )
2

A
F A A A2 div grad 0 in ,H HA A D A B P

t
ρ ρ φ∂

− − − − − = Ω⎡ ⎤⎣ ⎦∂
UI U I  (3) 

 ( ) ( )
2 2

A A
A A2 2

F

1ˆ div grad div  in ,HPc A P A B
t t

φ
ρ

⎛ ⎞∂ ∂
+ = − + − Ω⎜ ⎟∂ ∂⎝ ⎠

UI  (4) 

 

where ( ) ( )1 grad grad
2

tD =U U + U  and coefficient ĉ , tensors ,  HA B  and linear operator HA  

depend on geometry of cells composing the poroelastic material and also on physical 
properties of its solid and fluid parts. In fact, one can check that HB   is a symmetric linear 
operator and tensor HA , such that [ ]( )H

klij ijkl
A D A D= , satisfies H H H

klij lkij lkjiA A A= = . 

Since the fluid is supposed to be inviscid, only the normal component of displacements 
vanishes on WΓ , namely, F W F0 on ,⋅ = Γ ∩∂ΩU ν  whereas for boundary displacement of 
porous medium we suppose A W Aon .= Γ ∩∂ΩU 0  Similarly, on interface IΓ  between fluid 
and porous medium we consider the usual interface conditions of continuity of forces and 
normal displacements, that is, 
 
 ( ) ( )F A ,H

AP A D P A B φ− = + −⎡ ⎤⎣ ⎦n U n + I n  F A Ion .⋅ = ⋅ ΓU n U n  (5) 
 

If a normal displacement 0U  is imposed on EΓ , the above equations describing the motion of 
coupled system (1)-(5) must be completed with boundary condition F 0 E on .Uν⋅ ΓU =  
Finally, in order to close the model (see [2]), we are going to assume that 
 

 A A
W A I on ,   on . P PA A

ν ν
∂ ∂

= Γ ∩∂Ω = Γ
∂ ∂

0 0  (7) 

 
We are interested in harmonic vibrations so let us suppose excitation 0U  to be harmonic, i.e., 

( ) ( )( )0 0, , , Re , ,i tU x y z t e u x y zω= ; then all fields are also harmonic. By replacing these 
expressions in equations (1)-(7), we can define a harmonic source problem associated with the 
unsteady source problem, namely, 
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 2
F F F Fgrad 0 in ,pω ρ− + = Ωu  (8) 

 2
F F F Fdiv  in ,p cρ= − Ωu  (9) 

 ( ) ( )( ) ( )2
F A A A Adiv grad 0 in ,H HA A D A B pω ρ ρ φ− − − − − − = Ω⎡ ⎤⎣ ⎦I u u I  (10) 

 ( ) ( )( )2 2
A A A A

F

1ˆ div grad div  in ,Hcp A p A Bω ω φ
ρ

− + = + − ΩI u  (11) 

 ( ) ( )F A Ion ,H
Ap A D p A B φ− = + − Γ⎡ ⎤⎣ ⎦n u n + I n  (12) 

 F A Ion ,⋅ = ⋅ Γu n u n  (13) 
 F 0,⋅ =u ν A W Aon .= Γ ∩∂Ωu 0  (14) 
 F 0 Eon .Uν⋅ Γu =  (15) 

 A
W A on , pA ∂

= Γ ∩∂Ω
∂

0
ν

A
Ion . pA ∂

= Γ
∂

0
ν
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3. WEAK FORMUALTION 
 
In order to use finite element methods for numerical solution of (8)-(16), we write a weak 
formulation. For this purpose, we first introduce appropriate functional spaces. Let V  be the 
Hilbert space 2 1 3 1

F I A AH(div ) L ( ) H ( ) H ( )= ,Ω × Γ × Ω × ΩV  and 0V  its closed subspace: 
 
 { }0 F F A A F W E F A W A( ) 0 on ( ) 0 onq q ν= , , , ∈ : ⋅ = Γ ∪Γ ∩∂Ω , = Γ ∩∂Ω .V v v V v v  (17) 
 
Kinematic constraint in (13) is weakly imposed on the interface between the fluid and the 
porous medium by integrating this equation multiplied by a test function Fq  defined on IΓ . In 
conclusion, we can write the following source hybrid problem:  
For fixed angular frequency ω , find F F A A( )p p, , , ∈u u V  satisfying (14), (15) and 
furthermore,  
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I

A FF( ) 0q
Γ

⋅ − ⋅ = ,∫ u n u n  (18) 

 
for all F F F A 0( )q q, , , ∈v v V .  
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4. FINITE ELEMENT DISCRETIZATION  
 
Fluid and porous displacement fields belong to different functional spaces, FH(div ),Ω  and 

1 3
AH ( )Ω , respectively, hence different types of finite elements should be used for each of 

them in order to discretize weak problem (17)-(18). Let hT  be a regular family of tetrahedral 
partitions of F AΩ ∪Ω  compatible with the different domains and boundaries. 
To approximate fluid displacements, the lowest order Raviart-Thomas finite element (see [4]) 
is used in order to avoid spurious modes typical of displacement formulations when they are 
discretized by standard Lagrange finite elements.  
They consist of vector valued functions which, when restricted to each tetrahedron, are 
incomplete linear polynomials of the form ( ) ( )h x y z a dx b dy c dz a b c d, , = + , + , + , , , , ∈u . 
These vector fields have constant normal components on each of the four faces of a 
tetrahedron which define a unique polynomial function of this type. Moreover, the global 
discrete displacement field hu  is allowed to have discontinuous tangential components on the 
faces of tetrahedra of partition hT . Instead, its constant normal components must be 
continuous through these faces (these constant values being the degrees of freedom 
defining hu ). Because of this, div hu  is globally well defined in FΩ . Thus, for fluid 
displacements we use the Raviart-Thomas space  
 
 ( ) { }F F 0 FH(div ) ( )h T hR T T T TΩ := ∈ ,Ω : | ∈ ,∀ ∈ , ⊂ Ω ,R u u  (19) 
 
where { }2

0 1( ) ( ) ( ) ( )R T P T x y z a dx b dy c dz a b c d:= ∈ : , , = + , + , + , , , , ∈ .u u  
To approximate displacements in the porous medium, we use the so called “MINI element” in 
order to achieve stability in the discrete problem (see [1]). We recall definition of the 
corresponding discrete space by first defining bubble functions. For fixed hT T∈ , we denote 
by 1 4

T T…λ λ, ,  barycentric coordinates in tetrahedron T . Then bubble function α , associated 
with T , is defined by the product 1 2 3 4256 T T T Tα λ λ λ λ= .  This bubble function is a polynomial of 
degree four, null on surface of tetrahedron T  and taking value one at barycenter of T . The 
approximating space associated with the MINI element consists of continuous vector valued 
functions whose components, restricted to each tetrahedron, are sum of a bubble function and 
a polynomial of degree one, i.e.,  ( ) ( )h

i Tx y z ax by cz d e x y z a b c d eα, , | = + + + + , , , , , , , ∈u . 
The degrees of freedom for functions in this space are the values of the vector field at vertices 
and barycenters of tetrahedra. Then, for porous displacements, we use the MINI space  
 
 ( ) 1 3 3

A A 1 AH ( ) ( ( ) ( ))b
h T hP T P T T T T⎧ ⎫

⎨ ⎬
⎩ ⎭

Ω := ∈ Ω : | ∈ ⊕ ,∀ ∈ , ⊂ Ω ,M u u  (20) 
 
where ( ) { }bP T a aα= : ∈ .   
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To approximate porous medium pressure, continuous piecewise linear finite elements are 
used. They consist of scalar valued functions which, when restricted to each tetrahedron, are 
polynomials of the form ( )h

Tp x y z ax by cz d a b c d, , | = + + + , , , , ∈ .  Thus, porous medium 
pressure is approximated in the finite-dimensional space,  
 
 ( ) 1

A A 1 AH ( ) ( )h T hp p P T T T T⎧ ⎫
⎨ ⎬
⎩ ⎭

Ω := ∈ Ω : | ∈ ,∀ ∈ , ⊂ Ω .L  (21) 
 
We recall that the degrees of freedom defining hp  are its values at vertices of tetrahedra.  
Finally, in order to approximate the interface pressure we use piecewise constant functions on 
the triangles of the mesh lying on the interface IΓ . In other words, for interface pressure we 
use the space  
 
 ( ) { }2

I I 0 IL ( ) ( )h T hp p P T T T T∂Γ := ∈ Γ : | ∈ ∂ ,∀ ∈ ,∂ ∩Γ ≠ ∅ .C  (22) 
 
The degrees of freedom of this finite element space are the (constant) values on triangles in 

IΓ . Consequently, the discrete analogue to V  is ( ) ( ) ( ) ( )F A A Ih h h h h= Ω × Ω × Ω × ΓV R M L C  
while the corresponding to 0V  is  
 
 { }0 F F A A F D N F A D A( ) 0 on ( ) 0 onh hq q ν= , , , ∈ : ⋅ = Γ ∪Γ ∩∂Ω , = Γ ∩∂Ω .V v v V v v  (23) 
 
With these finite element spaces we can define the approximate problem to (17)-(18) 
searching the discrete solution F F A A( )h h h h

hp p, , , ∈u u V . 
 
5. NUMERICAL RESULTS 
 
In order to validate our method, we are going to build a simple example which can be reduced 
to a one-dimensional problem and then solved exactly. If we assume that every linear operator 
is a multiple of identity operator, we can find a solution of the form 

( )A A, , ( ),p x y z p z= ( )A A 3, , ( ) ,x y z u z=u e  and rewrite the above three-dimensional problem 
as an one-dimensional problem where the prime denotes derivative with respect to z and we 
have supposed that ( )A 3 A 3

HA D su′=⎡ ⎤⎣ ⎦u e e , A a= I , HB b= I . Let us assume a similar 

assumption for fluid displacement and interface pressure, i.e., F F 3( , , ) ( )x y z u z=u e  and 

F F( , , ) ( )p x y z p z= . We also suppose that ( ) ( ) ( )F F0, 0, ,0b d aΩ = × × −  and 

( ) ( ) ( )A A0, 0, 0,b d aΩ = × × . We have considered that fluid is air with Fρ = 1.225 3kg/m  and 
343c = m/s, whereas properties of the porous material are summarized 

in 10 29.18633 10 N/ms = × , 0.95φ = , a=0.67857, b=-0.05, ĉ= 6 26.59172 10 ms / kg−− ×  and 
2 31.26163 10 kg/mρ = × . With respect to dimensions of the enclosure, length and width are 
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1m while height is 1m for the first layer of free fluid and 1 m for the second layer of porous 
material whereas the normal displacement on EΓ  is 0 60u = . 
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Figure 1 – Curves of convergence for fluid and porous fields. 
 

We have computed the solution to this problem with three different uniform meshes, named 
mesh 1, mesh 2 and mesh 3 of 2548, 8140 and 18788 degrees of freedom, respectively. In 
Figure 1 we show the 2L -norm of the relative errors for fluid and porous displacement and 
pressure, against mesh-size, h. As it can be seen, convergence of order 2 is achieved for 
poroelastic fields and interface pressure. In addition, convergence of order 1 is achieved for 
fluid displacement.  
 
6. CONCLUSION 
 
We have considered a mathematical model for acoustic propagation in periodic non-
dissipative porous media with elastic solid frame and open pore. Parameters of this model 
have been computed by solving some partial differential equations in the unit cell obtained by 
homogenization methods. Then a three-dimensional finite element method has been proposed 
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and implemented for numerical solution of the coupling between a fluid and the above porous 
medium. In order to validate the proposed methodology and to assess convergence properties, 
the computer code has been used for a test example having analytical solution. 
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