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ABSTRACT: The calculation of the sound reduction index in modal analysis is presented in a general way; 
different approaches are described. These calculations are done in two steps: a vibratory study to determine the 
transverse displacement of the plate and a study of radiation. The specificity of orthotropic plates is presented. 
This study led to programming a calculation algorithm. Initial hypotheses are indicated, as well as results 
obtained for various plates or partitions. Modal analysis calculation results are then compared to the Cremer-
Sewell approach results and to laboratory measurements, in particular for “Monomur” walls. 
 
 
1. INTRODUCTION  
 
The knowledge of the sound reduction index is essential in the acoustical engineering of 
buildings. Cremer and Sewell provided expressions yielding general tendencies for the 
infinite plate. Modal analysis takes reflections on the edges into account. Lesueur, Maidanik, 
Wallace developed calculation techniques. 
The purpose of this paper is to present the Piaa Ta software and its applications, e.g. to 
Monomurs. Monomur walls are made of bricks of complex structure for good thermal 
properties (Figure 6). The different stages of the development of calculations in the analytic 
modal approach are presented. Mathematical expressions were programmed and examples of 
results are presented.  
 
 
2. THEORETICAL APPROACH 
 
The first work achieved on the prediction of sound reduction index are based on the study of 
an infinite plate and give general tendencies, like the mass law at low frequencies. The most 
important work on this subject was Cremer’s in the middle of the last century. In the 
seventies, Sewell gave a correction term in the low frequencies to take account of the 
dimensions of the plate, but it is still an approximation [1][2]. 
On the contrary, the modal theory is based on the study of a finite plate and its modes. The 
dimensions are now taken into account. The principle is that the transmission coefficient of a 
plate is equal to the sum of the transmission coefficients of each of its modes. 
The approach to the sound reduction index is done in two steps. First, the vibration of the 
plate is studied. The Rayleigh-Ritz method is used to expand the displacement w of the plate 
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over a basis Φm(x) Φn(y) 
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where amn is the amplitude of mode m, n. Two bases can generally be used: a sinusoidal or a 
polynomial basis. In order to calculate this displacement, we need the amplitude of the 
transversal displacement of the plate 
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where {fmn} represents the generalised driving forces and Amnpq the total impedance matrix of 
the plate. 
In the second step, the radiation of the plate is studied. The radiation impedance is a pressure 
to velocity ratio and represents the effect of the fluid on the structure. In the Piaa Ta software, 
this impedance is calculated with the formulas of Maidanick [1][2], given for the case of a 
sinusoidal basis and a light fluid. 
Vibration and radiation yield the sound reduction index for a diffuse field [1][2]. 
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3. APPLICATION 
 
The formulation of Cremer, and Sewell at low frequency, was the basis of earlier versions of 
our program. The study of the various approaches and the selection of hypotheses described 
below led to programming a modal calculation algorithm, for isotropic as well as orthotropic 
plates. Compound walls or ceilings can be calculated in the same manner as in the earlier 
versions, but using the results of the modal calculation of their components. 
 
3.1. Calculation hypotheses of the Sound Reduction Index program. 
The expansion of the transversal displacement is done over a sinusoidal basis (Fourier series). 
For this reason, a comparison is made of plates with simply supported boundary conditions. 
This leads to a diagonal matrix A where non-null terms are 
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with ωmn the natural pulsation for an isotropic plate: 
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D is the stiffness of the plate. The fluid in which the plate is immersed is assumed to be light 
(air). 
 
3.2. Case of orthotropic plates 
In the case of orthotropic plates, the natural pulsations are given by 
 

( )




















+














++






=
422

1

4

0

221
b

nD
b

n
a

mDD
a

mD
h yxyxmn

ππππ
ρ

ω   (6) 

 
Dx , Dy and D1 are the bending stiffnesses along the directions of orthotropy, Dxy the torsion 
stiffness. In the case of a parallelepipedic thin plate of thickness h, their expressions are 
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For plates with a geometrical orthotropy, having therefore only one Young’s modulus, the 
theoretical model changes. Indeed, at the beginning of the calculation, the presence of an 
integral on the volume can be noticed in the expressions of the kinetic and potential energies. 
The resolution of these integrals for complex geometries such as ribbed steel plates is rather 
difficult and requires heavy computational means. As our purpose is to develop a software 
that can be run on any standard computer, and with reasonable calculation times, the plate 
model was adapted to suit complex geometry panels. 
To this end, an equivalent plate method was used, i.e. the calculation of Young’s moduli of a 
thin plate such that its stiffnesses are equal to that of the plate to study. These moduli are a 
function of the modulus and the geometric characteristics of the original construction element. 
In that case, the expressions of stiffnesses are determined from the equations of the bending 
and torsion moments. Several authors handled this problem. Timoshenko [4] gives the 
stiffness of stiffened plates. For ribbed plates, the formulas by P. Cordonnier [3] were used. 
 
3.3. Numerical implementation 
The formulation was developed in standard C language and the programme runs on Windows 
machines equipped with Pentiums (500 MHz to 2 GHz). The sound reduction index is 
calculated over the frequency range 50-10,000 Hz, every ninth octave. Third octave bands 
results are then calculated and displayed. The calculation time is comparatively short (from 
negligible to a few seconds) and depends on the number of modes chosen for the calculation. 
 
3.4. Inputs for isotropic plates 
The software needs the following inputs: length (m), width (m), thickness (cm), density 
(kg/m3), stiffness (N/m), internal loss factor η (the internal damping loss of the plate), number 
of modes (the highest order for numbers m and n used in the calculation). 
A really important problem for simulations is to determine Young’s modulus and the internal 
loss factor of materials. Material properties data can be found in the literature or on the 
Internet. Many simulations for each plate were first made with different values. Then, 
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comparing results with measurements made it possible to determine an adequate value for 
each material. All these values were collected and make up our bank of materials. 
 
Theoretically, there are an infinite number of modes. In practise, we must limit the 
computation to a certain row. The modal density determines this row and depends on the 
upper frequency limit and on material properties and dimensions of the plate. 
 
3.5. Inputs for orthotropic plates 
The same inputs as in the case of isotropic plate are necessary, except that stiffness is more 
difficult to calculate. The first two types of orthotropic plates studied are steel cladding and L-
shape steel panel. As explained in 3.2, the formulas by Cordonnier-Cloarec [8] were used in 
order to calculate the stiffness of these types of plates. 
Using the same principle, stiffnesses can be obtained for plates with more complex geometry. 
Stiffnesses yield equivalent Young’s moduli, using the following expression: 
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4. EXAMPLES OF SIMULATIONS 
 
Several comparisons between the Cremer-Sewell and modal approaches were carried out, 
using our experimental data bank. A representative selection of typical variations is presented 
here. The three selected orthotropic panels are:  
1. Steel cladding, 0.7 mm thick. 
2. Hollow brick wall. 
3. Alveolar concrete floor. 
 
1.  Cladding 
This is a corrugated steel plate (Figure 1). Its specific geometry makes it orthotropic. The 
formulas of Cordonnier-Cloarec [8] were used to calculate them from dimensions and 
material properties. 
The modal calculation of the sound reduction index is close to the measured low frequency 
behaviour (Figure 2). The Cremer-Sewell formulation overestimates the sound reduction 
index by 5 dB and provides only a global behaviour. Accidents appear with modal 
calculations. The 200 Hz drop is due to modes (1,2), (2,2), (3,2) and (4,2), which have the 
same resonance frequency. At this frequency, the transmission loss is low for each of these 
modes. 

 
Figure 1- View of the cladding 
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The saw tooth aspect is due to the prevalence of one 
of the two bending stiffnesses over the other. This 
phenomenon implies that several modes of same row 
m, but of different rows n, have identical resonance 
frequencies. The accidents due to the various modes 
thus are no longer distributed over the entire 
frequency band, but are centred on certain 
frequencies. This phenomenon can be due to an over-
estimated bending stiffness or an under-estimated 
internal loss factor, which would increase the dips due 
to each mode. The loss factor is actually a function of 
the frequency, but too little data obtained about it 
made it necessary to enter it as a single value. 
 
 
2. Hollow brick wall 
The wall is made of hollow baked clay bricks, 50 mm 
thick; each brick consists of six lines of horizontal 
cells; the bricks are mounted with plaster in an 
alternate way. The study was done in two steps. 
First, the lack of influence of the layout and the 
jointing was demonstrated, using measurements of a 
solid brick wall, also mounted with plaster in an 
alternate way. The measured sound reduction index 
was compared with the calculated index of a wall 
made up of brick material of same characteristics. 
The results obtained being similar, it can be 
concluded that the alternate mounting or the presence 
of joints are not determining factors for the 
calculation of the sound reduction index. 
Then, on the basis of these results, the hollow brick 
wall was simulated, by considering that the structure 
of a brick extends over the entire wall. Dimensions 
and density are identical to those of the real wall. The 
internal loss factor corresponds to that of material 
and is frequency dependant. 

The calculation required the use of 160x160 modes. A 
very good agreement between simulation by modal 
theory and the results obtained in laboratory was 
found (Figure 3). 
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Figure 2 - 7/10th mm cladding, 

modal theory, 
Cremer-Sewell theory, 

measurement 
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Figure 3 - Hollow brick wall 

 modal theory,         measurements 
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3. Alveolar concrete floor 
This plate has a geometry comparable to the hollow 
brick’s (Figure 4). The same formula for calculating 
the bending stiffnesses was therefore used; to this 
end, the approximation was made that the cell was 
rectangular. 

 
Figure 4 - Alveolar concrete floor 

 
This calculation was made with about 250 modes, 
hence a calculation time of 3 s. A very good 
agreement between modal theory and laboratory 
measurement can again be observed. 
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Figure 5 - Alveolar concrete floor , 

      modal theory,          measurement 
 
5. SOUND REDUCTION INDEX OF MONOMURS 
 
5.1. Monomurs studied 
 
“Monomurs” walls are made of bricks designed for good thermal properties (Figure 6). 
 

Monomur 1 
220 kg/m² 
E = 20 Gpa 

 

Monomur 2 
384 kg/m² 
E = 20 Gpa 

 
Figure 6 - The two monomurs studied 

 
5.2. Analytical calculations of stiffnesses 
 
The wall’s stiffness is its Young’s modulus times the moment of inertia. The moment of 
inertia of the brick can readily be calculated in the direction where the cross-section is 
constant. In that direction, the stiffness is calculated over the entire wall and can be 
considered close to reality.  
In the second direction, the moment of inertia is more difficult to calculate. An approximation 
was therefore used: the brick is split into “layers” that can be calculated. The total stiffness is 
then considered equivalent to the sum of the stiffnesses of each layer, which implies that the 
layers are not mechanically connected. The resulting stiffness is therefore approximate. 
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5.3. Approach to the loss factor 

A measurement of the internal loss factor 
was carried out in a laboratory (Figure 7).
The loss factor varies strongly with 
frequency. Using a single value is 
therefore an inaccurate approach. It is 
then necessary that when measuring the 
sound reduction index, the loss factor as a 
function of frequency be also measured 
as this information is very important. 
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Figure 7 - Loss factor as a function of frequency 

5.4. Results 
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Figure 8 - Calculation for monomur 1 
      modal theory,          measurement 
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Figure 9 - Calculation for  monomur 2 
      modal theory,          measurement 

 
The results obtained by this method are generally satisfactory. However, a precise knowledge 
of input data appears to be essential, particularly stiffnesses. The present method has the 
drawbacks of being partially approximate and to apply only to profiles that can be split into 
corrugated, flat, or L-shaped plates, which limits its possibilities. 
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6. EVOLUTION OF THE SOFTWARE 
 
An algorithm using expansion over a 
polynomial basis is currently under 
development. The advantage of a 
polynomial calculation is to take into 
account various edge conditions and see its 
influence on the index. Currently, this 
algorithm allows calculations only at low 
and medium frequencies, as can be seen on 
Figure 10, which shows the case of 12-mm 
fibreboard. With identical edge conditions, 
drops at the resonance frequencies of the 
first modes are not so strong with the 
polynomial calculation, which is closest to 
reality. Calculation over the full frequency 
range, 50 to 10,000 Hz, is currently studied. 
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Figure 10 - Sound reduction index of a 12-mm 

fibreboard 
polynomial calculation,         sinusoidal 

calculation         measurement 
 
 
7. CONCLUSION 
 
A module for the calculation of the sound reduction index was developed on the basis of a 
modal development, using a sinusoidal expansion (Fourier series). The results obtained were 
compared to laboratory measurements. Good agreement between experimental results and 
simulations is observed with the new calculation, especially in the lower frequencies where 
accidents due to modes are clearly visible. A new calculation module, making it possible to 
take account of various edge conditions, is currently under development. This should lessen 
the drops of the sound reduction index at the resonance frequencies of the first modes, as well 
as at the critical frequency. Finally, the early version of Piaa TA using the Cremer and Sewell 
formulas is available as freeware. Requests should be made by e-mail via our Internet site. 
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