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RESUMO: Este artigo introduz alguns conceitos de base sobre equações integrais e mostra a sua aplicação na 
determinação da propagação de energia acústica em recintos fechados. 
Mostra-se que as equações integrais resultantes podem ser formuladas na linguagem dos operadores lineares, daí 
resultando uma notação simplificada em que as propriedades algébricas das equações que determinam a 
propagação da energia são mais facilmente caracterizadas. 
São apresentados alguns métodos gerais de resolução de equações integrais tal como métodos aproximados e 
métodos de bases vectoriais finitas. 
Apresentam-se, ainda, as definições necessárias envolvidas na descrição de campos de energia acústica, que 
servem de ponto de partida à aplicação das técnicas apresentadas. 
 
 
ABSTRACT: This paper introduces some basic concepts of boundary integral equations and their application 
for the determination of the propagation of sound energy inside enclosures.  
Linear operators are shown to provide a simplified notation and to emphasize the algebraic properties of the 
resulting integral equations.  
Some general methods of solving linear operator and integral equations are reviewed and discussed, such as 
approximation methods and finite basis methods.  
In addition, some of the necessary definitions involved in describing acoustic energy fields for applying these 
techniques in the field of room acoustics prediction are presented. 

1. INTRODUCTION 

Energy based methods offer an interesting and valid alternative mid and high frequency 
technique to classical predictive methods such as FEM, BEM and others. In fact, when the 
acoustic superposition of waves can be thought as being accomplished by incoherent 
components, then energy methods can be applied in a diverse range of problems. 
In this paper, one starts by defining a set of acoustic variables that are solely derived from 
energy quantities, and then an energy balance equation is set up, that portrays the complete 
behaviour of the acoustic energy propagation inside enclosures. 
Boundary integral equations have been derived earlier in some fields of acoustics. One 
example is Kuttruff’s Integral Equation [1, 2] that determines the propagation of energy inside 
rooms with walls that reflect the sound energy in a purely diffuse way. However, to the 
authors knowledge, no generalization has been made for the general cases of arbitrary 
reflection laws. In addition, some work has been done by applying the finite element method 
to Kuttruff’s equation, in the form of the Radiosity Method, but without a formal analysis of 
the underlying assumptions. 
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Finally, some work has been directed towards the development and application of Finite 
Element and Monte Carlo Methods (in the form of ray or cone tracing methods, for example), 
but the continuous infinite-dimensional case has not been addressed completely. 
It is the objective of this paper to give some insight of the general continuous problem, 
resorting to concepts of functional analysis, and also to present some general methods to solve 
the problem. 
All the quantities mentioned in this paper are dependent on the frequency of the acoustic 
disturbance. 

2. THEORETICAL FRAMEWORK 

2.1. Definitions: 

• Angular Acoustic Intensity (or Acoustic Radiance) 
 
 ( , , ) ( , )I Iθ ϕΩ Ω= Ωr r

% %
 (1) 

 
is the amount of acoustic energy at some point r into a specified direction given by Ω = (θ,ϕ) 
(related to a local coordinate system with the polar axis aligned with the surface’s normal), 
per unit time, per unit area perpendicular to the direction of motion and per unit solid angle. 
 

• Acoustic Power Flux into direction Ω 
 

 ( ) ( , ) cosB I dθΩ Ω= Ω Ωr r
% %

 (2) 
 

• Acoustic Radiosity 
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 (3) 

 
gives the total power leaving a point on a surface, per unit area, and is obtained by integrating 
over the upper hemisphere surrounding surface point r.  
 

• Surface Reflectivity 
A passive surface, which reflects the acoustic energy, such that when hit by an incident 
angular acoustic intensity, ( , , ) ( , )i i iI Iθ ϕΩ Ω= Ωr r

% %
, returns a reflected angular intensity, 

( , )oIΩ Ωr
%

, can be characterized by a Surface Reflectivity Function (SRF) 
( , , , , ) ( , , )o o i i o iR Rθ ϕ θ ϕ = Ω Ωr r
% %

determined by: 
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 ( , ) ( , , ) ( , ) cosTotal

o o i i iI R I dθΩ Ω
Ω

Ω = Ω Ω Ω Ω∫r r r
% % %

 (4) 

 
This expression allows the definition for the SRF, as the ratio between the angular acoustic 
intensity in the outgoing direction (subscript o) and the acoustic power flux in the incident 
direction (subscript i). It is therefore a function of both incoming and outgoing directions, and 
the preceding definition gives the following equation for the SRF: 
 

 
( , )( , , )

( , ) cos
o

o i
i i i

IR
I dθ

Ω

Ω

Ω
Ω Ω =

Ω Ω
rr

r
%

%
%

 (5) 

 
In the most usual cases with physical meaning, the SRF obeys the “principle of detailed 
balance” with ( , , ) ( , , )o i i oR RΩ Ω = Ω Ωr r

% %
. The function R is the most general expression 

for the acoustic energy reflection characteristic of a passive surface. The SRF is not 
necessarily a number between 0 and 1. By its definition, it can have any value between 0 and 
∞, its units being [sr-1]. 
 

• Directional-hemispherical Surface Reflectivity 
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 (6) 

 
is a dimensionless quantity between 0 and 1, expressing the ratio between the acoustic 
radiosity and the incoming acoustic power flux at r from direction Ωi. 
 

2.2. Energy Balance Equations 
The general case of the energy balance at some surface element is determined by the 
following boundary integral equation: 
 
 ( , ) ( , , ) ( , ) cos ( , , ) ( , ) cosD D D D D

o o i i i i o i i iI R I d R I dθ θΩ Ω Ω
Ω

Ω = Ω Ω Ω Ω + Ω Ω Ω Ω∫r r r r r
% % % % %

 (7) 

 

where ( , )D D
iIΩ Ωr

%
refers to the angular acoustic intensity arriving at some boundary point r 

from direction D
iΩ due to the direct field of a sound source located inside the enclosure. The 

hemispherical integral in equation (7) can be rewritten in terms of a surface integral over the 
enclosure’s boundary. If s is the point on the boundary that is visible from r in the direction 
Ωi, then r is also visible from s in a complementary direction Ωi

* and according to the 
dissipation of the angular acoustic intensity in the air, one has: 
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 *( , ) ( , ) m

i iI I e− −
Ω ΩΩ = Ω r sr s % %

% %
 (8) 

 
where m equals the absorption coefficient in the air. Therefore, equation (8) is transformed 
into: 
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 (9) 

 
where vis(r, s) is a visibility function that returns 0 if both points are not visible to each other 
and 1 otherwise. Introducing the transport and reflection integral linear operator Ψ: 
 
 ( , ) ( , , ) ( , ) cos ( )( , )D D D D D

o o i i i i oI R I d IθΩ Ω ΩΩ = Ω Ω Ω Ω + Ψ Ωr r r r
% % % %

 (10) 
 
or more compactly as an operator equation: 
 

 DI I IΩ Ω Ω= +Ψ  (11) 
 

2.3. Properties of the Operator Equation 

Operator Ψ in equation (11) can be written as follows: 
 

 *( )( , ) ( , ) ( , )o i
S

I K I dΩ ΩΨ Ω = Ω∫∫r r s s s
% % % % %

 (12) 

 
where K(r, s) is supposed to be a measurable function over the domain of integration and 
constitutes the kernel of operator Ψ. It can be easily shown, that for SRF’s with physical 
meaning, kernel K belongs to the Hilbert Space L2, and more precisely the following is true: 
 

 
2( , ) 1

S S

K d d <∫∫ ∫∫ r s r s
% %% %

 (13) 

A kernel that belongs to space L2 is denoted as a Hilbert-Schmidt kernel. Consequently, the 
norm of operator Ψ verifies [3]: 
 

 
2( , ) 1

S S

K d dΨ ≤ <∫∫ ∫∫ r s r s
% %% %

 (14) 
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and so the spectral radius of the transport and reflection operator is less than unity. In this 
conditions, there exists a bounded operator 1( )ID −−Ψ  [3], where ID is the identity operator, 
and one has: 

 1

0
( ) j

j
ID

∞
−

=

−Ψ = Ψ∑  (15) 

 
Therefore, the formal and exact solution of the Fredholm integral equation of the second kind 
[4] (11) is given by: 

 1

0
( , ) (( ) )( , ) ( )( , )D j D

o o o
j

I ID I I
∞

−
Ω Ω Ω

=

Ω = −Ψ Ω = Ψ Ω∑r r r
% % %

 (16) 

 
what is normally known in the literature as a Neumann series. 
 

2.4. Approximate solutions of equation (16) 

2.4.1. Truncated Neumann Series and Iterated Kernels 
 

Define 
0

n
j

n
j=

Θ = Ψ∑ as the operator related to the truncated series after n terms. This operator 

will approximate the exact solution of equation (16). The error of the approximation is given 
by: 
 

 
1

1 1 1 1

nj
j j

n
j n j n j n

ID
+∞ ∞ ∞

= + = + = +

Ψ
−Ψ −Θ = Ψ ≤ Ψ ≤ Ψ =

− Ψ∑ ∑ ∑  (17) 

 
and thus, the metric deviation of the approximate solution of equation (16) is: 
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( , ) ( , )

1

nD
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o o
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I I

+
Ω

Ω Ω

Ω Ψ
Ω − Ω ≤

− Ψ

r
r r %
% %

 (18) 

 
Therefore, the error associated with the truncated series is a function of the norm of the 
transport and reflection operator, which by its turn depends on the SRF. The less the 
magnitude of the SRF, the less the incurred error in the calculated series. The explicit 
representation of this solution can be written with the help of the iterated kernels of order n, 
corresponding to a particular Θn operator: 
 

 1( , ) ( , ) ( , )n n
S

K K K d−= ∫∫r u r s s u s
% %% % % % %

 (19) 
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2.4.2. The Nyström Method 
 
The Nyström Method, or Quadrature Method, is one of the most straightforward methods for 
solving integral equations. It exploits the similarity between the infinite-dimensional integral 
operator and the corresponding finite-dimensional matrix formulation. m points pj are selected 
in the domain of operator 1( )ID −−Ψ  at which to approximate the solution of the acoustic 
angular intensity IΩ: 
 1( ) ( ) : 1, 2,...,j jID j m−= −Ψ =q p

% %
 (20) 

where { },j =p r ω
% %%

is a vector in R3 x S2. The Nyström Method defines that the value of IΩ at p 
is approximated by a quadrature rule as: 
 

 1

0

( ) ( ) ( ) ( , )
m

D
j j j

j

I I w K −
Ω Ω

=

≈ +∑p p p p p q
% % % % % %

 (21) 

where K-1 is the kernel associated with operator 1( )ID −−Ψ , and where the weights wj define 
the quadrature rule. Writing this rule for all the selected m points pj  
 

 1

0
( ) ( ) ( , )

m
D

j j i j j i i
i

I w K −
Ω

=

= +∑q p p p p q
% % % % % %

 (22) 

 
that can be cast into matrix form and solved by standard techniques. 
 

2.4.3. Finite Basis Methods 
The basic concept of the Finite Basis Methods is to approximate a function space with a 
finite-dimensional subspace, that will be the span of some finite collection of basis functions 
chosen for their convenient properties. The goal is to find n scalar values αi so that: 
 

 
1

( ) ( )
n

n
i i

i

I bαΩ
=

= ∑p p
% %

 (23) 

is in some sense a good approximation of IΩ and where the bi are the selected basis functions 
of the finite-dimensional subspace. For sake of brevity we introduce the operator Φ=ID-Ψ. 
Thus, the exact solution of equation (16) satisfies: 
 
 ( )( , ) ( , )D

o oI IΩ ΩΦ Ω = Ωr r
% %

 (24) 
 

• Point Collocation Method 
 
In this method, the approximate function IΩn is chosen from the n-dimensional subspace by 
requiring the transformed function Φ IΩn  to attain the desired value at a finite number of 
collocation points. That is, one selects n points pj from the domain and require that: 
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 ˆ( )( ) ( ) ( ) : 1, 2,...,n n D

j j jI I I j nΩ Ω ΩΦ = = =p p p
% % %

 (25) 
 
which results in a system of n linear equations in the coefficients αi: 
 

 
1

( )( ) ( )
n

D
i i j j

i
b Iα Ω

=

Φ =∑ p p
% %

 (26) 

that can be rewritten in matrix form. 
The Point Collocation Method does not enforce equality of IΩn  and IΩ at the points pj since it 
only constrains the values of the transformed function Φ IΩn . However, it can be shown, that 
for suitably chosen collocation points, the approximation will converge to the exact values as 
n →∞. 
The usual Radiosity Method applied in Room Acoustics and Thermal Engineering is derived 
from the Point Collocation Method. This is achieved by restricting the surfaces to be pure 
diffuse reflectors and by subdividing the boundary into a collection of disjoint patches. 
Finally, the basis functions are defined to be piecewise constant over every single patch. In 
this greatly simplified case, the SRF becomes a multiplicative factor in front of the integrals 
of operator Φ, and the integrals become purely geometrical quantities (form factors), whereby 
system (26) can be easily solved for. 
 

• The Least Squares Method 
 
This method is an application of Hilbert Space methods to the solution of integral equations, 
where the goal is again to best approximate the exact solution. The criterion of best 
approximation is now determined by the least squares minimization. That is, one seeks an 
approximate function IΩn  such that the Hilbert Space norm-2: 
 

 
2

( )( ) ( )n DI IΩ ΩΦ −p p
% %

 (27) 
 
is minimized. It can be shown that this condition corresponds to the requirement that the 
residual ( )( ) ( )n DI IΩ ΩΦ −p p

% %
 be orthogonal to the subspace generated by the transformed basis 

functions. Therefore, one has: 
 

 ( )( ) ( ) | ( )( ) 0n D
iI I bΩ ΩΦ − Φ =p p p

% % %
 (28) 

which yields: 
 

 
1

( ) | ( )( ) ( )( ) | ( )( )
n

D
j i i j

i
I b b bαΩ

=

Φ = Φ Φ∑p p p p
% % % %

 (29) 
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and that can again be written as a set of linear algebraic equations in the coefficients αi. The 
matrix of the inner products is a Gram matrix, which is non-singular provided that the basis 
functions are linearly independent. 
 

• The Galerkin Method 
 
In the Galerkin Method the condition of best approximation corresponds to the requirement 
that the residual ( )( ) ( )n DI IΩ ΩΦ −p p

% %
 be orthogonal to the subspace generated from the original 

basis functions. Thus, this method seeks a solution that is exact once operator Ψ and the 
direct angular intensity IΩD have had their ranges collapsed onto the chosen n-dimensional 
subspace. The Galerkin condition is therefore: 
 

 ( )( ) ( ) | ( ) 0n D
iI I bΩ ΩΦ − =p p p

% % %
 (30) 

 
which gives the following set of linear algebraic equations: 
 

 
1

( ) | ( ) ( )( ) | ( )
n

D
j i i j

i
I b b bαΩ

=

= Φ∑p p p p
% % % %

 (31) 
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