
 
 

                                          GGuuiimmaarrããeess  --  PPoorrttuuggaall

    

  
paper ID: 033 /p.1 

 
Simulation of the sound propagation inside a wind 

instrument by means of the Finite-Difference Time-
Domain Method 

 
J. Redondoa, R. Picoa and B. Roigb 

 
a Grupo de Dispositivos y Sistemas Acústicos y Ópticos, DISAO. Escuela Politécnica Superior de Gandía 

Carretera Nazaret Oliva S/N, Grao de Gandia, Spain fredondo@fis.upv.es  
b Departamento de Matemática Aplicada. Escuela Politécnica Superior de Gandia. Carretera Nazaret Oliva 

S/N, Grao de Gandia, Spain 
 
 

RESUMEN: En el presente trabajo se estudia la evolución temporal de la propagación de las ondas sonoras en 
el interior de un instrumento de viento mediante el método de diferencias finitas en el dominio temporal 
(FDTD). El modelo de instrumento adoptado se compone de un resonador con simetría axial (cuerpo del 
instrumento) excitado por medio de pulsos periódicos de aire. Para simular el mecanismo de excitación del 
instrumento se emplean fuentes transparentes en la entrada del resonador. La técnica de cálculo empleada en el 
método de diferencias finitas reduce las oscilaciones espureas ya que utiliza dos mallas al tresbolillo. Esta 
técnica ha sido utilizada en las últimas décadas en otros ámbitos de la Acústica, tales como la Acústica de Salas 
[1] o la Acústica Ambiental [2]. La simulación numérica del instrumento permite analizar la influencia de la 
geometría interna (agujeros, forma de la terminación) en la propagación sonora del instrumento, así como, la 
evolución temporal del régimen de oscilación. 
 
ABSTRACT: In the present work the time evolution of the travelling sound waves inside a wind instrument is 
studied by means of a Finite-Difference Time Domain (FDTD) method. The adopted model for the instrument 
consists of a resonator with axial symmetry (body of the instrument) excited by periodic air pulses. In order to 
simulate the excitation mechanism transparent sources should be used at the input of the resonator.  The 
considered calculation technique reduces the spurious oscillations due to the use of staggered grids. This 
technique has been successfully applied in the last decades in several fields within Acoustics, such as Room 
Acoustics [1] or Environmental Acoustics [2]. The numerical simulation of the instrument makes possible to 
analyze the influence of the internal geometry (orifice, termination shape, and so on) on the sound propagation 
and the time evolution of the oscillation regime.  
 
 
1. INTRODUTION  
 
In the field of woodwind acoustics, different numerical methods have been employed to 
simulate the behaviour of acoustical bores. Some of this works are applied in sound synthesis 
by physical modelling of woodwind, such as digital waveguide modelling (DWM) [3] and the 
multi convolution algorithm (MCA) [4] or the wave digital modelling (WDM) [5].  The 
approach is based on a one-dimensional model of wave propagation in the bore. In this work, 
the Finite-difference time-domain method (FDTD) is used to evaluate the acoustic response of 
a simplified instrument consisting of a cylindrical pipe excited at the entrance.  
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2. TIME DOMAIN SIMULATION USING FINITE DIFFERENCE 
 
The finite-difference time-domain (FDTD) method was first introduced by Yee in 1966 [6] in 
order to study the scattering of electromagnetic waves. Since that moment a counterpart for 
acoustics has been developed in several fields, mainly in room acoustics. In the case of 
musical instruments authors have mainly use different numeric techniques like Finite Element 
Methods (FEM) and Boundary Element Methods (BEM). In most of the cases frequency 
domain methods were considered. In last decade some extensions of those methods to the 
time domains has been used in order to analyze transient states. 
 
2.1 Fundamentals 
The first order acoustic equations in a homogeneous medium without losses can be written as 
follows, 
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where p is the pressure field, u�  is the vector particle velocity field, ρ  is the mass density of 
the medium and )( 2ck ρ=  is the compressibility of the medium. 
In the case of axial symmetric sound fields, equations (1) and (2) can be written in cylindrical 
coordinates as follows, 
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The spatial and time derivatives of any function can be approximated by central finite 
difference. For instance, 
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where ∆r is the spatial interval between considered points. Defining three staggered grids (see 
figure 1) and after some algebra equations (3)-(5) can be expressed as follows: 
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Figure 1 – Spatial staggered grids considered 

 
So, the pressure, p, is evaluated in a 
discrete mesh ),( zmrn ∆∆ at times 

))(( 2
1 tl ∆+  while the velocity, ur and 

uz, are evaluated in slightly displaced 
meshes ( ),)(( 2

1 zmrn ∆∆+  and 
))(,( 2

1 zmrn ∆+∆  respectively) at 
times )( tl ∆  (m, n and l are integers). 
This scheme is known as a time-spatial 
staggered grid that increases the 
accuracy. 
 

 
Assuming a locally reactive boundary, the particle velocity on the boundary can be expressed 
as follows: 

Z
pnu =��·  (10) 

p(r,z) p(r,z+∆z) 
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where n�  is the vector normal to the boundary and Z is the acoustic impedance of the 
boundary. As an example we will express the boundary condition in the defined staggered 
grids defined above for a flat surface between 0=z  and 2zz ∆−= , 
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2.2 Perfectly Matched Layers 
Due to some cumulative errors using equation (10) for boundary conditions with impedance 
matching the acoustic impedance of the medium (ρ c), the absorption of the boundaries is 
limited. For practical reasons it is impossible to achieve level differences between reflected 
and incident waves bigger that 60 dB. Therefore a huge grid should be considered in order to 
separate in time the boundary spurious reflections from the significant reflections inside the 
integration area. The bigger the integration area is, the slower the calculations result. To avoid 
the need for huge integration areas a technique called “Perfectly Matched Layers” (PML) has 
been proposed [7-8]. This technique consists on defining a lossy medium in the zones near to 
the boundaries. This implies the inclusion of additional terms, including two attenuation 
factors (γr and γz) in the different spatial directions considered, i.e: 
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where the sound pressure p has been split into two additive components pr and pz. These 
components have no physical meaning and are defined only because of mathematical reasons. 

0=rγ      inside the integration area  (16) 
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γz is defined in an analogous way. γmax is the maximum value of the attenuation coefficient. 
 
2.3 Excitation (source inclusion) 
Once defined the integration scheme is important to consider which of the possible excitation 
techniques should be used. Excitation techniques can be divided attending to the field that is 
excited, pressure or particle velocity, and attending to the way in which this excitation is 
included. In the second case one can simply impose a spatial excitation at time t = 0 or to 
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include a time perturbation on at least one point of the grids. This means that the time 
evolution of one (or more) point is not governed by equations given above but from a discrete 
time function, i.e.: 
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In order to avoid numerical dispersion the use of softly varying functions, such as Ricker 
wavelets [9], is strongly recommended.  
Another common problem to solve is the elimination of unwanted reflections caused by the 
sound source (excitation point). In order to avoid those spurious reflections from the source 
“Transparent sources” must be performed [10]. However, in our case the excitation will be 
performed at a boundary region, so, there is no need for the use of such a kind of sources. 
 
2.5 Music Instruments simulations 
As commented above our purpose is to use an FDTD scheme to evaluate the acoustic 
behaviour of the body of a wind instrument. As starting point we have considered a clarinet. 
This instrument has geometry near to a cylinder. So we will work with a cylinder excited by a 
Ricker wavelet at one extreme. The surrounding will be rounded by a multilayer PML to 

avoid reflections. Figure 2 illustrate 
schematically the calculation area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 – Geometry of the calculation area (the tube has a length of 50 cm 

and an inner diameter of 28 mm) 
 
The maximum frequency to be evaluated is 8000 Hz. Frequencies above that are non 
significant and should not be considered.  So, the minimum wavelength to evaluate will be 
approximately 4 centimetres. In order to consider enough points per wavelength we will take 
a value of 1 millimetre for the spatial step (∆r and ∆z). Given that, the maximum time step is 
limited by the Courant number (s), 
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We will take the maximum value of ∆t, i.e. 1’47·10-6 sec. 

            
Figure 3 – Relative sound pressure level for Ricker wavelets excitation with central 
frequency: a) 8 kHz, b) 4 kHz, at different time steps 
 
 
3. RESULTS 
 
Musical instruments which have no flare at the open end of their air column include organ 
pipes and flutes. For such cases, the sound emitted by these instruments is determined by the 
characteristics at the open end of the cylindrical pipe. Figure 3 shows sound pressure level at 
different time steps. (Animations corresponding to that plots can be download at 
http://ttt.gan.upv.es/~fredondo/). 
 
For the sake of brevity we only present here the results for the reflection function of the 
termination, i.e, the relationship between the wave propagating backwards and the wave 
propagating forward. In the frequency domain these two waves are related by the following 
equation 

)()()( frfpfp +− =   (20) 
where r(f), is the reflection function. Figure 4 shows the results obtained for the reflectance of 
a flanged pipe. 
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Figure 4 – Reflection coefficient of the termination of the instrument 

 
These results are in good agreement with the theoretical model proposed by Levine and 
Schwinger  in [11],  in which they obtained a rigorous and explicit solution of the reflectance 
taking into account for the radiation of sound from a circular pipe. 
 
4. CONCLUSION 
 
In this paper it is demonstrated that FDTD methods are useful for simulating the acoustic 
behaviour of a tube, as a first approximation, to analyze the transient characteristics of a wind 
instrument. In future works we will include in our simulations several terminations of the tube 
to analyze its effect on the sound radiated by the instrument. 
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