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Resumo 

Apresentamos um método para afinar as frequências naturais de uma barra genérica para um instrumento 

de percussão de lâminas (e.g. marimba, vibrafone) para um conjunto de frequências alvo predefinidas 

usando um algoritmo de otimização global. A barra é modelada como uma viga unidimensional livre 

nas duas extremidades e suas frequências naturais são calculadas através de elementos finitos. O corte 

de perfil é composto por uma série de cortes retangulares, que além de reduzir a dimensão do problema 

de otimização para apenas alguns pares de variáveis (altura e comprimento de cada corte), também gera 

formas fáceis de fabricar. Adicionalmente, dois termos de penalidade são adicionados à função 

objectivo, para (1) minimizar a quantidade de material removido e (2) minimizar mudanças abruptas na 

altura do perfil, de forma a aliviar a complexidade a acelarar o processo de manufactura. Os resultados 

ilustram o efeito das diferentes penalidades nas soluções obtidas e, adicionalmente, perfis optimizados 

para várias afinações exiginentes e pouco ortodoxas são comparados com resultados previamente 

publicados, demonstrando os beneficios do corte simplificado. 

Palavras-chave: multi-modal, afinação, barra, optimização, evolutivo. 

 

Abstract 

We present a method to tune the natural frequencies of a generic bar for a mallet percussion instrument 

(e.g. marimba, vibraphone) to a set of predefined target frequencies using a global optimization 

algorithm. The bar is modelled as a one-dimensional beam free at both ends and its natural frequencies 

are calculated via 1-D finite elements. The undercut is made up of a series of rectangular cuts, which 

aside from reducing the dimension of the optimization problem to a few pairs of variables (height and 

length of each cut) also generates shapes that are easy to manufacture. Moreover, two penalty terms are 

added to the objective function, in a weighted manner, to (1) minimize the amount of extracted material 

and (2) minimize abrupt changes in profile height, aimed to alleviate the complexity and accelerate the 

manufacturing process. The results illustrate the effect of the different penalties on the solutions 

obtained. Additionally, optimized shapes for various unorthodox and demanding tuning targets are 

presented and compared to previously published results, illustrating the benefits of the simplified 

undercut model.  
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1 Introduction 

Unlike a vibrating string, the natural frequencies of a uniform rectangular bar are not harmonically 

related (i.e. their frequencies are not integer multiples of the lowest/fundamental frequency), a feature 

common to tonal musical instruments (Figure 1). 

 

 

 

 

 

 

 

 

 

 

Figure 1 - First four transversal modes of vibration of a rectangular bar  

with uniform cross-section and their corresponding frequency ratios [1]. 

Hence, the tuning of idiophone bars, such as marimbas or vibraphones, is generally pursued via an 

undercut on the bars cross-section, as seen in Figure 2, such that the frequencies of the first few natural 

modes of vibration become harmonically related. Typical tuning ratios for different instruments are 

(1:4:10), (1:4:9) or (1:3:6). The aim of this work is to use global optimization techniques to find undercut 

shapes that are suitable for a generic bar to be tuned to a set of specified target frequencies. 

 
Figure 2 - Typical undercut of a marimba/vibraphone bar. 

A handful of studies can be found in literature on the tuning of idiophone bars (see for example [2], [3], 

[4], [5] and [6]). The studies in [7], [8] and [9]  additionally report on experimental results using various 

tuning approaches. In [6], the authors use a genetic algorithm on a 3D finite element model, where the 

variables specify bar thicknesses on a 2-D mesh. This leads to an optimization problem with hundreds 

of variables (computationally expensive) and solutions with exceedingly complex geometries. In [3], 

which similarly uses global optimization techniques (simulated annealing), the authors use a 1-D model 

and reduce the dimension of the problem by representing the shape of the undercut in terms of a set of 

orthogonal shape functions (Fourier/Chebyshev). The latter approach has the merit of enabling a wide 

variety of undercut shapes using only a few variables and gives it the ability of finding optimized shapes, 

with smooth profile changes, for very diverse tuning ratios. However, in both cases, the resulting 

undercut shapes are curvilinear or present exceeding complex geometries, and hence are significantly 

more difficult to manufacture. With the aim of developing a similarly versatile model, which accounts 

for the ease of manufacture we focus here on rectilinear undercuts. 

2 Model Description 

The bars can be modelled as a beam, free at both ends. In many cases, particularly for marimbas, the 

slender beam assumption made by the simpler Euler-Bernoulli beam model may incur some errors at 

high order modes. Hence, we use here the Timoshenko’s beam equations [10] where the transverse 

displacement ( , )y x t  and slope ,x t( )  of small amplitude vibrations are described by 
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where ( ) ( )A x bH x=  and 
3( ) ( ) 12I x bH x=  are the cross-sectional area and second moment of inertia, 

respectively (with b  the bar’s width and ( )H x  its local thickness);   is the density, E  is the Young’s 

modulus, 2 [2(1 )]G = +  is the shear modulus (  is the Poison’s ratio) and k  is a geometric factor for 

the shear energy (equal to 5 6  for rectangular cross-sections).  

2.1 Undercut Model 

For simplicity, we define a symmetric undercut consisting of a series of rectangular cuts, as shown in 

Figure 3. This undercut is defined by 2N  degrees of freedom (where N  are the number of cuts), namely 

their lengths, n , and the associated local heights, nh .  

 
Figure 3 - Schematic description of the simple rectangular undercut ( 2)N = . 

This choice of geometry leads to a set of upper and lower bounds for each variable: 

min 0

Lengths : 0 2
for 1, 2, 3
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n
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where minh  is a feasible minimum thickness, defined a priori, motivated by the need for structural 

strength. The upper limit on the variables n  could also be set below 2L , if there is a desire to fix the 

height of the beam near its free ends. Then, the cross-sectional profile ( )H x  is given by  

1
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letting 1 0N + = . 

2.2 Finite Element Model 

Using the finite element method, we can then discretize the spatial domain into eN  beam elements 

(Timoshenko) of the same length, and formulate the system in the generic eigenvalue form 

   ( ) 2 0m m − =K M

where n  and ( )n x  are the natural frequencies and mode shapes to be calculated, respectively.  



 Filipe Soares, José Antunes, Vincent Debut  

 

 

4 

Given that the profiles contain discontinuities, an approximation of the elemental profile height iH  

(Figure 4) must be made for the elements in which discontinuities fall. Because, from (1), the modal 

frequencies of a homogeneous bar depend on the ratio 
2( ) ( ) ( )I x A x H x , we choose to interpolate iH  

using the following quadratic weighting: 

2 2
1 1 2

1 2( )

n n
i

h x h x
H

x x

−  + 
=

 + 

The cross-sectional area and second moment of inertia within such element i  are readily obtained with 

i iA bH=  and 
3 12i iI bH= , respectively. Some errors will inevitably occur using such interpolations, 

but ultimately, a sufficiently large number of elements eN  in the FE discretization will reduce them 

efficiently.  

 
Figure 4 – Illustration of the finite beam element i , where a cross-sectional discontinuity occurs. 

2.3 Objective Function 

The objective function must include the mistuning between the several target frequencies 
*
m  and the 

frequencies estimated with the finite element model , )m (λ h . Here we choose to formulate the multiple 

tuning deviations in a single objective function describing the average squared error in percentage 
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where M  is the number of defined targets, and m  indicates the associated mode of vibration. 

Additionally, it can be useful to monitor the tuning deviations in cents, given by 

( ) 2 *
, 1200 log m

m

m





 
 =    

 

λ h

2.4 Geometric Penalties 

In the spirit of designing a manufacturing aimed algorithm, we can add penalty terms, of various types, 

to the objective function to narrow the parameter space and generate more manufacture friendly 

geometries. Here we present two examples to: (1) minimize the amount of extracted material and (2) 

minimize abrupt changes of profile (smoothness of profile). 

2.4.1 Volumetric Penalty 

It can be generally said, particularly for CNC operated mills, that the time spent on carving a metal bar 

is proportional to the volume of material to be extracted. Hence, it would be resourceful to try and 
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minimize the amount of extracted material from the bar, in parallel to minimizing the deviations to the 

target frequencies. The percentage of volume of extracted material, with respect to the original bar’s 

volume (with uniform profile), is given by 

( )
2

0
0 0

2
( , ) 100 ( )

L

V h H x dx
h L

=  −λ h

Then, a combined objective function might be formulated as follows 

E( , ) ( V  = − ) +λ h

where 0 1   is a weighting factor on the volumetric penalty, i.e. if 0 =  the volumetric constraint 

is not accounted for, if 1 =  only the volumetric condition is accounted for. 

2.4.2 Smoothness Penalty 

Another example would be to penalize abrupt changes in the bar’s height. This can be beneficial in: (1) 

increase model accuracy, as geometries with sharp discontinuities might be less reliable, possibly due 

to unaccounted 2-D effects [8] ; and (2) generating more aesthetically pleasing shapes with smoothly 

changing heights. Such a penalty can be formulized, for example, as a “profile roughness” to be 

minimized 

1

01

1
( , ) 100

N
n n

n

h h
S

N h

−

=

−
=  λ h

which effectively represents an average height change per discontinuity, with respect to the original 

height 0h . A combined objective function can be formulated as in (9). 

3 Global Optimization: Evolutionary Algorithm 

The general scope of an evolutionary algorithm relies on an attempt to mimic Darwinian evolution 

following the motto “survival of the fittest”. We start the analogy by defining: 

• Genes: the values of the variables in a solution ( , )λ h ; 

• Individual: one solution, i.e. a defined set of variables λ  and h , whose fitness is characterised 

by the objective function; 

• Population: A group of solutions. 

The algorithm consists of a group of solutions that change at each iteration, where typically the best 

solutions “survive”, “mate” and “mutate”. The recipe of the algorithm developed here follows the typical 

loop of an evolutionary algorithm, consisting of 4 main steps:  

• Elitism: a small group of the best solutions in one generation proceed unchanged to the next. 

• Selection: consisting in the choice of individuals within the population that are going to “mate”. 

Typically, the fittest solutions are more prone to be chosen.  

• Crossover (mating): simulating natural reproduction, this step typically combines different 

genes of two parents (selected solutions) to generate children, whose genes are a crossover 

between the parents’.  

• Mutation: simulating genetic mutation, this step consists in generating solutions with pseudo-

random variations in their genes. 
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In sum, there are two qualitatively different aims in this process. One is that of “exploitation”, i.e. finding 

local minima or improving an already obtained solution. The second one is that of “exploration” which 

aims at exploring different regions of the parameter space avoiding the algorithm to be stuck in local 

minima. The latter is carried mostly by the mutation step while the former is given by the 

selection/crossover steps.  

3.1 Roulette Selection Operator 

Here we choose to use the so-called roulette selection operator. It is a fitness proportional probabilistic 

method where the probability of an individual to be chosen to mate is given, in our case, by 

1

1

1 1popN

i
i jj

p
 

−

=

 
=  

 
 


where popN  is the number of individuals in the population and i  is the evaluation of the objective 

function on individual i . The selected individuals are drawn from random numbers [0, 1]r = , as 

illustrated in Figure 5. 

 

Figure 5 – Illustration of the selection procedure from the fitness proportional probabilistic method. 

3.2 Heuristic Crossover Operator 

Once selected the parents to mate, one needs an operator that combines the genes (variables) of two 

parents to form one or more children. Here we chose to use a simple, and commonly used, heuristic 

crossover operator that generates two children 1,2c  from two parents 1,2p  by the following 

1 1 2 1

2 2 1 2

( )

( )

r

r

= + −


= + −

c p p p

c p p p

where 1,2c  and 1,2p  are vectors containing the space variables of the solutions and r  is a random number 

between [0,1]  with uniform distribution. Unlike many other crossover operators, this one does not retain 

any of the “genes” given by the parents but instead produces children whose “genes” are somewhere 

within the range defined by the parents. Moreover, the produced children are symmetrically located with 

respect to the “average gene values” defined by the parents. 

3.3 Mutation Operator 

The mutation operator in an evolutionary algorithm generally serves to create diversity in the population 

and explore new regions of the parameter space. The Uniform Random Mutation operator programmed 

here works in the following way: 

• Step 1: Define how many “genes” are to be mutated mutN , via a random pick of an integer 

between 1 and 2n  (total number of degrees of freedom). 
• Step 2: Select which “genes” will be mutated by randomly picking mutN  integers between 1 and 

2n . 
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• Step 3: Modify selected “genes” with pre-defined mutation strengths σ , normalized to the 
variables’ bounds, giving r= +c p σ , where r  is a vector of size 2n  with mutN  non-zero 

elements, each composed of a random number between  1, 1− , c  is the mutated children and 

p  is the parent to be mutated. 

3.4 Overview of Procedure 

Once defined the three main operators, the algorithm requires four parameters to be defined: 

• Size of population popN , defining the number of individuals in each generation; 

• Percentage of elitism eP , defining the number of individuals that proceed to the next generation 
unchanged (fittest individuals); 

• Ratio of crossover to mutation percentages c c mr P P= , where cP  and mP  are the crossover and 

mutation percentages, respectively and 100%e c mP P P+ + = . This parameter defines if the 
algorithm will be geared more towards exploitation or exploration.  

• Mutation strength  , which controls the exploratory range of the mutation.  

Additionally, a stopping criterion can also be set, typically either a maximum number of iterations and/or 

a satisfying error tolerance. 

4 Results and Discussion 

4.1 The Effect of the Volumetric Penalty 

Here we present results from a study conducted to evaluate the effects of varying the volumetric penalty 

parameter  . Naturally, a larger   will emphasize more on reducing the amount of extracted volume 

at the expense of a less demanding tuning tolerance.  

Surely, choosing an appropriate value for parameter   depends strongly on the problem at hand and on 

the amount of viable solutions. For example, very demanding tuning targets, e.g. with 5M   or 

awkward tuning ratios, will reduce significantly the amount of viable geometries (reasonably in tune). 

The volumetric penalty is clearly useful in scenarios where a particular tuning target can be met by 

various geometries, i.e. in problems where there exist many global minima. 

We conducted two statistical studies to evaluate the effect of varying the parameter  . For each value 

of  , a total of 50 runs of 100 iterations were computed to optimize an aluminum bar with dimensions: 

0.35 mL = , 0.05 mb =  and  0 0.01 mh =  to: 

• Target frequency ratio (1:4:10) with maximum number of cuts 5N = ; 

• Target frequency ratio (1:2:4:8) with maximum number of cuts 4N = ; 

with fundamental frequency
*

1 175 Hzf = . The two cases aim to present qualitatively different examples: 

(1) a less demanding frequency ratio (1:4:10) with larger number of cuts (i.e. many viable solutions 

possible) and (2) a demanding frequency ratio (1:2:4:8) for a relatively low number of cuts, meaning 

lower number of viable solutions. For both cases an FE discretization with 150 elements was used. The 

size of the population was 50popN = , the crossover/mutation percentages were set to 30%/60%, with 

10% of elitism. Uniform random mutation was used with mutation strength 2 =  . Each run solved 

approximately 4500 function evaluations and took approximately 1 minute. Figure 6 shows a statistical 

summary of the tuning error   and extracted volume V for the optimal solution found to the (1:4:10) 

tuning ratio, for various values of parameter  . Analogous results for the (1:2:4:8) tuning ratio are 

found in Figure 7. 
We note that, in both cases, increasing the value of   consistently generates solutions with less 

extracted volume. We see that, for low values of  , the extracted volume can be decreased without 
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compromising the tuning errors significantly. In fact, when  =   for both cases, we note a slight 

improvement of the average tuning error of the solutions obtained, compared with the unpenalized 

results. This characteristic might be explained by the fact that, in the existence of multiple regions 

showing potential viable solutions, a lack of a volumetric penalty might divide the population, where 

several groups of individuals explore different regions, splitting the overall effort. In such scenarios, the 

volumetric penalty acts as a disambiguation between regions, creating more homogeneous populations, 

and hence, a faster convergence towards a global optimum.  

 
Figure 6 - Statistical summary of the tuning error   and extruded volume V  of the best solutions found 

to the ratio (1:4:10) at various values of  , after 100 iterations and a total of 50 runs per configuration. 

The red line is the median, blue box is the 25/75 percentiles, black whiskers the extreme values and red 

scatters are outliers. 

 
Figure 7 - Statistical summary of the tuning error   and extruded volume V  of the best solutions found 

to the ratio (1:2:4:8) at various values of  , after 100 iterations and a total of 50 runs per configuration. 

The red line is the median, blue box is the 25/75 percentiles, black whiskers the extreme values and red 

scatters are outliers. 

In both cases, when    , the average tuning errors start to increase significantly. In these cases, it is 

up to the user what would be the best compromise between the reduction of extracted volume and tuning 

tolerances. If the evolutionary algorithm is used as a stand-alone process, lower values of   are 

probably a better option. However, if the combined approach is used, larger tuning errors stemming 

from the evolutionary algorithm with a heavy volumetric penalty can potentially be reduced by the 

derivative-based approaches a posteriori, setting  =  . 

Figure 8 shows some of the optimized profiles found by the algorithm to the target ratios (1:4:10) and 

(1:2:4:8) with the respective percentage of extracted volume. All presented solutions have average 

tuning errors 0.01%  . We note that in the pursuit of solutions with less extracted material, the 
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resulting geometries generally tend to be formed by deeper and more localized extractions. Curiously, 

these types of geometries are precisely those to be avoided by the “smoothness” penalty term S . This 

suggest that the two penalties presented may have somewhat of a contradictory nature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 The Effect of the Smoothness Penalty 

Analogous studies were conducted for the smoothness penalty, S , shown in Figure 9 and 10. Similar 

results were found, confirming that it is possible to get, statistically, smoother geometries without loss 

of tuning accuracy, particularly when 0.2  . Again, above a certain value of  , the tuning accuracy 

starts to deteriorate, more evidently for the demanding tuning target (1:2:4:8). We notice as well that, 

for the less demanding target (1:4:10), there appears to exist a limit of improvement for the profile 

smoothness, beyond which the tuning error would severely deteriorate. This might occur because a 

certain amount of cut depth is necessary to bring the modal frequencies reasonably close to their targets.  

 

 

 

 

 

 

 

 

 

 

Figure 8 – Optimized undercuts for tuning ratios (1:4:10) on the left and (1:2:4:8) on the 

right, with various amounts of extracted volume. 

Figure 9 - Statistical summary of the tuning error  and profile smoothness  of the best solutions 

found to the ratio (1:4:10) at various values of , after 100 iterations and a total of 50 runs per 

configuration. The red line is the median, blue box is the 25/75 percentiles, black whiskers the extreme 

values and red scatters are outliers. 
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Figure 10 - Statistical summary of the tuning error   and profile smoothness S  of the best solutions 

found to the ratio (1:2:4:8) at various values of  , after 100 iterations and a total of 50 runs per 

configuration. The red line is the median, blue box is the 25/75 percentiles, black whiskers the extreme 

values and red scatters are outliers. 

Figure 11 shows some of the optimized profiles found by the algorithm to the target ratios (1:4:10) and 

(1:2:4:8) with the respective values of “roughness”. For the ratio (1:4:10), satisfying solutions were 

indeed obtained using the smoothness penalty compared to those typical found without it. For the ratio 

(1:2:4:8), while the penalty effectively reduced the parameter S , it seems that the demanding tuning 

ratio requires the geometry to have two abrupt cavities about 15% away from each end, as seen in Figure  

as well as in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Optimal Profiles for Various Tuning Ratios 

Here we present the resulting optimized profiles for various unorthodox tuning ratios using the present 

model. For comparative reasons, we follow the target tuning ratios and model parameters found in [3]. 

Figure 12 shows the resulting optimized profiles for the tuning ratios (1:3:6:12), (1:5:10:15), 

(1:2:4:8:16), (1:2:5:10) and (1:3:5:7:9) found by [3] (on the left) and found by the present model (on the 

right). The solutions were calculated using 300 finite elements, used the least number of rectangular cuts 

and stopped at a criterion of error 0.01 %  .  

 

Figure 11 – Optimized undercuts for tuning ratios (1:4:10) on the left and (1:2:4:8) on the 

right, with various values of “smoothness”. 



 Acústica 2020 – TecniAcústica 2020, 21 a 23 de outubro, Portugal  

 

 

 

11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Noticeably, most of the shapes resulting from the rectangular cut model resemble the shapes of the 

curvilinear undercuts found in [3]. All shapes appear to be discontinuous versions of their analogous, 

sinusoidal based, profiles.  

These results demonstrate that is it possible, with the current model, to obtain designs with negligible 

tuning inaccuracies, even for unorthodox and demanding tuning targets. However, it must be noted that 

the modeling simplifications (1-D model, elemental interpolation for discontinuities, etc.) will surely 

incur small errors. These can in great part be resolved by applying the optimization procedure on a 3-D 

finite element model. This would provide a more realistic representation of real bars, as well as providing 

the possibility of including the frequency of torsional modes in the objective function, at the cost of 

larger computational times of course. However, since the number of variables is typically small ( )8n 

, computation times should not become unfeasible. Nevertheless, the results show an exciting potential 

to design mallet instruments with new timbral characteristics and manufacture friendly designs. 

Figure 12 – Optimal shapes for various tuning ratios. Curvilinear profiles based on sine and cosine 

functions found in [3] (left) and those resulting from the present model (right). Note: relation between 

vertical and horizontal axis are not to scale. 
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5 Conclusion 

In the pursuit of designing easily manufacturable bars tuned to specified target frequencies, we present 

a versatile 1-D model of the undercut based on a series of simple rectangular cuts, capable of achieving 

geometries for demanding tuning targets (large number of frequency targets and/or unorthodox tuning 

ratios), with a minimal amount of design variables (typically 8n  ) . We show that, using evolutionary 

algorithms, with parameters tuned to accelerate convergence of the specified problem, it is possible to 

find simple optimal undercut geometries to satisfy a wide range of predefined tuning targets at low 

computational cost. In addition to tuning to target frequencies, we explored two added penalty terms, 

which successfully generated more appropriate geometries to either (a) minimize volume of extracted 

material or (b) smoothen abrupt changes in profile. It was found that these two possible additional 

criteria are, in a sense, opposite and lead to widely different profiles of the tuned bar.  

Based on the evolutionary optimization algorithm developed, extensive computational experiments were 

carried out in order to assess the performance of the evolutionary algorithm as well as to find the most 

appropriate parameters values for solving this specific optimization problem.  

Overall, the proposed bar-profiling concept seems promising, and the optimization strategy developed 

produced totally satisfying tuning results.  
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