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ABSTRACT 
 
Linear decomposition of Head Related Transfer Functions (HRTFs) through statistical analysis 
allows defining multi-channel intermediate formats for binaural rendering of audio scenes. The 
context of augmented reality highlights the advantages of such formats in terms of 
computational efficiency, scalability, universal encoding and individually adapted decoding. The 
design of universal encoding functions can be optimized with control on the reconstruction 
performance on frequency and spatial dimensions. Once the resulting multi-channel format is 
determined, methods can be found in order to allow individual adaptation of temporal and 
spectral localization cues. 
 
 
 
INTRODUCTION 
 
The LISTEN Project 
 
Our work takes place in the frame of the LISTEN project [Listen], which is a shared-cost RTD 
project in the Information Society Technologies (IST) Program of the European Commission's 
Fifth Framework Program. Its objective consists in augmenting the physical environment 
through a dynamic soundscape, which users experience over motion-tracked wireless 
headphones. Immersive audio-augmented environments are created by combining advanced 
user modeling methods with binaural-based spatial audio rendering. These allow for adapting 
the content to the users’ individual spatial behavior. 
 
The frame of this project obliges the binaural real-time rendering engine to handle a large 
amount of sound sources. Besides, accuracy of the audio scene with respect to the visual 
environment may imply the use of a room response processor based on a physical model of the 
installation room. This leads to apply binaural processing also to image sources of the first 
reflections, resulting in a significant increasing of the number of sources to be processed. 
 
Usual implementation of such a binaural rendering engine, which consists in performing each 
sound source spatialization separately, is a too high computational cost solution, since it needs 
2 or 4 filters for each source. The multi-channel binaural approach, and the corresponding 
implementation, seem to be more adapted to the specific problems raised by the LISTEN 
project. 



Multi-Channel Approach For Binaural Rendering 
 
The multi-channel approach for binaural rendering consists in approximating the matrix   H  of 
minimum-phase HRTFs, by the product of a matrix   Gn  of   n  position dependent gains by a 
matrix   Fn  of   n  reconstruction filters. More precisely, knowing the   p × q  matrix   H , whose rows 
are the complex minimum-phase HRTFs of length   q  measured for   p  source positions, 
decomposition on a reduced number   n  of channels consists in finding two matrices   Gn  and   Fn , 
whose size are respectively   p × n  and   n × q , so that a measure of the error : 

    E H,Gn ⋅Fn( ) 
is minimized. In [Larcher00], columns     Gn,k  of   Gn  are interpreted as   n  gains depending on the 
source position, namely   n  spatial functions, and rows     Fn,k  of   Fn  as   n  reconstruction filters 
corresponding to the   n  channels. This leads to the implementation described in figure 1. 
 

 
Figure 1. Multichannel implementation of the binaural rendering 

 
While usual implementation of binaural implies a multiplication of synthesis filters when the 
number of sources increases, the implementation allowed by the multi-channel approach results 
in new gains, which have a lower computational cost. 
 
However, the implementation cost is not the only advantage of adopting the multi-channel 
approach. It allows also defining two main parts in the rendering engine. On the one hand, the 
delays and gains, which are implemented as many times as the number of sound sources, 
constitute the encoding part and produce an intermediate format (namely   n  channels per ear) 
which contains the whole audio scene. On the other hand, the decoding part does not depend 
on the number of sources and consists in the   n  reconstruction filters. 
 
Authors of [Larcher00] also detailed how a statistical analysis performed on a set of different 
subjects’ HRTFs allows defining a universal encoding, while decoding can be adapted to 
individual characteristics of each subject, using specific reconstruction filters. 
 
Principal Components Analysis 
 
In this paper, we will focus on a specific method for obtaining the matrices   Gn  and   Fn , namely 
the Principal Components Analysis (PCA) applied to the decomposition of HRTFs. This method, 
also known as Karhunen-Loève expansion, has been described in [Kistler92] and [Chen95]. 
This section relies on a practical implementation of this decomposition which uses the Singular 
Value Decomposition (SVD) of   H  : 

    H = U.Σ.DH  
where   D

H  denotes the complex conjugate of   D .   U , Σ  and   D  are respectively of size   p × p , 

  p × q  and   q × q , so that   U HU = Id ,   D HD = Id . Non-zeros coefficients of Σ  are on its diagonal 
and are the singular values of   H , whose absolute values are sorted in decreasing order. For a 
decomposition on   n  components, we define the following matrices : 

  Gn  : the   n  first columns of   U  

  Fn  : the   n  first lines of   ΣD H  
 
For a given number   n  of components, PCA ensures the minimization of the Frobenius norm of 
the difference   H −Gn ⋅ Fn , which may be interpreted as a least-squares measure of the error : 
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where the Frobenius norm of a matrix     A= ai ,j( ) is given by : 

    
A = ai, j
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An interesting property of the PCA is due to Perseval’s equation : since the least-squares norm 
remains invariant by Fourier Transform, the Fourier Transform of a matrix, which is obtained by 
a Fourier Transform applied to each row, keeps the Frobenius norm invariant : 

    
A = TF −1 A( )  

Thus, if PCA is performed in temporal domain : 
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decomposition of the matrix   h  of Head Related Impulse Responses (HRIRs) leads to the same 
gains   Gn  and to the inverse Fourier Transform   f n of   Fn. PCA performed in the time and 
frequency domains leads to the same results. 
 
Another rather interesting property of PCA is given by the hierarchical order of singular values of 
  H , which implies a hierarchy in the   n  channels. This means that multi-channel formats issued 
from PCA decomposition are scalable : on the one hand, sound scene encoded on a given 
number of channels may be decoded on a fewer number of filters; on the other hand, a sound 
source may be encoded on a fewer number of channels, if it does not require a high spatial 
resolution. 
 
In the following the whole decomposition process on   n  components will be written : 

    H
n →  Gn ,Fn( ) 

 
Objectives 
 
Since the product   Gn ⋅Fn  does not fit exactly the HRTFs matrix   H , PCA decomposition of 
HRTFs implies a diminution of the rendering quality. Furthermore, the Frobenius norm, which is 
the error criterion on which PCA decomposition is based, distributes the error equally among 
positions and frequencies. This means that all positions and frequencies are handled with the 
same accuracy, which can be considered irrelevant from the auditory perception point of view. 
The main objective of the following sections is to modify the error criterion, so that accuracy of 
the reconstruction is enhanced for frequencies and positions that are perceptually relevant. 
 
 
 
METHODOLOGY 
 
General Frame 
 
In order to improve reconstruction of perceptually relevant positions and frequencies, we define 
a weighted norm to be used as the error criterion : 

    
A

W
= w i ,j ai, j

2

i , j
∑  

where     w i , j  is a weighting function depending on the position and frequency indices in matrix   A, 

respectively     i ∈ 1, p[ ] and     j ∈ 1,q[ ]. Higher values of     w i , j  correspond to perceptually relevant 

points . We first split this weighting function onto   w i
G  and   w j

F  which depend respectively on the 
position and the frequency : 

    w i ,j = w i
Gw j

F  

This allows defining a simple relation between 
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Due to the relation above, the decomposition process can be divided into three steps. First, the 
matrix   H  is multiplied left and right by   WG  and   WF : 

    H
w F ,wG →    ′ H = WGHWF  

Then, the PCA decomposition of   ′ H  can be performed : 

    ′ H n →  ′ G n , ′ F n( ) 

Finally, we perform the inverse weightings     WG
− 1 and     WF

− 1 on the resulting matrices   ′ G n  and   ′ F n  : 

    ′ G n
wG

−1

 →   Gn =WG
−1 ′ G n  

    ′ F n
wF

− 1

 →   Fn = ′ F nWF
−1 

 
This gives : 

  
H − Gn ⋅Fn W

= WG H −Gn ⋅ Fn( )WF = ′ H − ′ G n ⋅ ′ F n  

Thus, the minimization of 
  

′ H − ′ G n ⋅ ′ F n  which is guaranteed by the PCA decomposition, ensures 

the minimization of 
  
H − Gn ⋅Fn W

. The remaining issue consists in designing weighting functions 

  w i
G  and   w j

F  that correspond to perceptual criteria. 
 
Frequency Domain 
 

Frequency weighting 
 
A direct application of the weighting technique presented above consists in deducing   w j

F  from 
human auditory resolution. This means using weighting functions calculated from Equivalent 
Rectangular Bandwidth (ERB) or Bark scales, as reviewed in [Huopaniemi98]. The ERB 
weighting function is deduced from the following equation : 

    
w j

F = 24.7 ⋅ 4.37 ⋅ fj + 1( )[ ]−1
 

where   f j  denotes the center frequency (in kHz) corresponding to the column   j  of the matrix   H . 
The weighting function which approximates the Bark scale verifies : 

    

w j
F = 25 + 75 ⋅ 1+ 1.4 ⋅ fj
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Frequency warping 

 
However, in the context of real-time application, PCA decomposition is followed by a filter 
design, which allows efficient implementation of reconstruction filters (lines of the matrix   Fn ). 
Since methods for this filter design also include perceptual aspects, we intend in the following 
paragraphs to unify perception-related operations of the PCA decomposition and the filter 
design into a single frame, based on frequency warping. 
 
The frequency warping method is an alternative to frequency weighting in order to incorporate 
human auditory resolution into filter design. It consists in modifying the frequency scale of the 
filter to be modeled, by replacing each unit delay   z by a first-order all-pass section :  

    
D z( )=

z + λ
1+ λz

 

For   0 < λ < 1, low frequencies are stretched and high frequencies are compressed, so that 
resolution of the resulting frequency scale approximates the human auditory resolution. Values 
of the all-pass coefficient λ  corresponding to the ERB and the Bark scales are given in 
[Smith99]. 



 
As for filter design, frequency warping may be an alternative to frequency weighting in order to 
include human auditory resolution in the PCA decomposition process. If frequency warping is 
performed prior to PCA decomposition, frequencies of the resulting matrix are equally relevant 
in a perceptual point of view, and frequency weighting is no more necessary. Such a 
decomposition process may be sketched as follows : 
 

 
where   H

λ  denotes the matrix of warped head-related filters,   Fn
λ  the matrix of the   n  warped 

reconstruction filters,   Bk
λ z( ) Ak

λ z( ) the   n  warped direct-form IIR filters, and   Bk z( ) Ak z( ) the 

dewarped direct-form IIR filters (    k ∈ 1,n[ ]). 
 
Two problems may be encountered when proceeding as described in the previous paragraph. 
The first problem is directly related to the several transforms that are performed on the HRTF 
matrix. When interpolating phase or magnitude of the head-related transfer functions in order to 
warp the frequency scale, or when applying SVD to the HRTF matrix, resulting reconstruction 
filters may be non-real. Due to equivalence performing PCA either in temporal or in frequency 
domains, this problem is avoided by performing PCA on HRIRs. Frequency warping on HRIRs 
is performed using the warped FIR (WFIR) design proposed in [Karjalainen99]. Impulse 
response of the WFIR implementation is computed and truncated to fit the initial number of 
points of the HRIR. 
 
Another problem may occur when dewarping the modeled filters. Applying the inverse bilinear 
transform on direct-form IIR filters results in instability of poles and zeros, as shown in 
[Karjalainen99]. This instability, due to computation error, limits the maximum value   λmax  of the 
all-pass coefficient, depending on the filter order   r  and the floating point relative accuracy ε . A 
simulation of computation error, which is not detailed here, has highlighted an approximate 
formula for   λmax  : 

    
λmax ≈ min 1, 1.25 ⋅ 1− ε1 2r 

 
 
 

 
  

 
   

For a typical sampling rate of 44.1 kHz, where Bark scale is approximated with   λ ≈ 0.76 , and for 
a computation in Matlab, where   ε ≈ 2.2 ⋅10−16, the formula gives a maximum order     r ≈ 20 . 
 
Solution proposed in [Karjalainen99] consists in implementing filters by Warped IIR (WIIR) 
structures. However, one may want to use traditional filter structures. Since frequency warping 
performed on direct-form structure leads to instability of zeros and poles, we propose to perform 
it on corresponding biquad structures. Direct-form IIR transfer functions returned by the filter 
design are first factorized into cascades of biquads. Then, bilinear transform is applied to these 
biquads. In this method, the order of each structure to be warped is kept at 2, ensuring 
computational stability of the bilinear transform. This allows handling filter order higher than 20, 
with values of all-pass coefficient corresponding to those given in [Smith99] for approximating 
the Bark and ERB scales. 
 
Spatial Weighting 
 

Logarithmic magnitudes 
 
One proposal consists in normalizing HRTFs by the square root of their energy. This means that 
the weighting function is the raw energy : 
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The goal of this normalization is to improve reconstruction of low energy HRTFs. 
 

Frontal positions 
 
A well known difficulty when dealing with implementation of binaural is the accuracy of frontal 
positions reconstruction. This is particularly true when wanting to adapt to individual specific 
features. Thus, a possible spatial weighting may be found in order to improve reconstruction of 
frontal positions. Once the azimuth   θi  and the elevation   ϕi  are given, which correspond to the 
position 

    i
∈ 1, p[ ], a good indicator of deviation from frontal direction is given by : 

    

vi
G λ( )=

1− λ( )⋅ cos θi( )cos ϕi( )+ 1[ ]
2 ⋅ 1− λcos θi( )cos ϕi( )[ ]

 

where 
  vi

G λ( ) is a continuous function derived from the frequency warping formula, whose 

maximum value is 1 for     θi =ϕ i = 0  and minimum value is 0 for     ϕi = 0  and   θi = π . The width of 
the curve is determined by the λ  coefficient, with   −1< λ < +1. This indicator may be included in 
the following weighting function : 

    wi
G α,λ( )= 1+ α −1( )v i

G λ( ) 
where α  denotes the weighting ratio between front and back positions. 
 
 
 
CONCLUSION 
 
Methods described in this paper intend to improve reconstruction of perceptually relevant 
features of HRTFs. Since the whole methodology is based on a weighted distance, the latter is 
the best candidate for an objective measure of the error between initial and reconstructed 
HRTFs. However, since minimization of this distance is ensured by the PCA, this distance 
cannot determine the relevant weighting parameters that have to be used. Thus, only further 
listening tests, which should be performed soon, will hopefully validate the methodology and 
especially determine relevant parameters for the weighting transforms. 
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