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ABSTRACT 
 
A modal substructuring method is developed for the analysis of the acoustic behaviour of 
mufflers with uniform cross-section and a perforated pipe carrying mean flow. First, the 
transversal modes are found by means of a modal synthesis approach based on two different 
modal bases, which can be obtained analytically for simple geometries, such as circular and 
elliptical cross-sections, as well as numerically for irregular shapes. Then, the mode-matching 
technique is applied at the area discontinuities of the muffler in order to obtain its acoustic 
behaviour. For illustration purposes, a circular concentric resonator with mean flow is analysed. 
The comparison with finite element results shows good agreement. 
 
 
 
1. INTRODUCTION 
 
The acoustic behaviour of mufflers with perforated pipes and mean flow can be analysed by 
means of different techniques. The use of plane wave models [1] [2] enables to reduce the 
computational requirements at the cost of a loss of accuracy in the high frequency even below 
the onset of higher order modes. To improve the prediction, it is possible to use three-
dimensional approaches based on analytical solutions of the wave equation [3] for simple 
geometries, as well as numerical techniques such as FEM [4] or BEM [5] for arbitrary muffler 
geometry, or a combination of them. This work proposes a technique based on modal synthesis 
applied to mufflers with uniform cross-section with a perforated pipe carrying mean flow. First, 
two transversal modal bases (zero pressure and zero velocity in the perforated wall) are 
considered for the central pipe and the outer chamber, which can obtained analytically or 
numerically depending on the complexity of the cross-section. The modes are coupled by 
means of pressure-displacement relationship associated with the perforated pipe. A generalised 
eigenvalue problem is obtained from which the axial wavenumbers and the transversal modes 
for the whole cross-section can be evaluated. The use of initially known modal bases leads to a 
procedure that avoids iteration associated with eigenequations based on Bessel functions [3] 
[6]. Finally, the mode-matching method is applied at the area discontinuities to calculate the 
pressure and velocity fields inside the muffler. For illustration purposes, the proposed technique 
is applied to a concentric resonator, and the results are compared with finite element 
calculations, showing an excellent agreement. 
 
 



2. THEORY 
 
Figure 1 shows the geometry of a muffler of arbitrary uniform cross-section with a perforated 
pipe carrying a mean flow. Here, it is assumed that the mean flow in the outer chamber is 
negligible. 
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Figure 1. Muffler with perforated pipe carrying a mean flow. 

 
For harmonic behaviour, the acoustic pressure and axial velocity fields are expressed as 

tje)z,y,x(p)t,z,y,x(P ω=  and tje)z,y,x(u)t,z,y,x(U ω= , respectively, and the acoustic wave 
equation inside the perforated duct (region B) is given by [1] 
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being j the imaginary unit, M the Mach number of the mean flow in the z direction and k the 
wavenumber (k = ω/c0, being ω the angular frequency and c0 the speed of sound). The same 
equation is also valid for the outer chamber (region A), by considering M = 0. The pressure field 
in each region of the muffler can be assumed as 
 

 zkj ze)y,x()z,y,x(p −Ψ=  (2) 
 
where kz is the axial wavenumber. The substitution of Eq. (2) in Eq. (1) yields 
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being kt the transversal wavenumber (for region A, the Mach number M must be set to zero in 
Eq. (3)). The solution of Eq. (3) can be expressed in terms of series of travelling modes, which 
leads to [1] [3] 
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where ±

s,zk  is the axial wavenumber associated with the incident and reflected wave whose 

modes are )y,x(and)y,x( ss
−+ ΨΨ , respectively, and −+

ss BandB  are propagation coefficients. 
 
The following subsection describes the procedure to evaluate the modal solution in the whole 
cross-sectional area, which is based on a modal representation of each subdomain (regions A 
and B). 
 
 



2.1 Evaluation of the transversal modes 
 
The transversal modes can be obtained from the analysis of the two regions A and B, which 
have a common perforated boundary Γp with an associated acoustic impedance Zp. The modal 
solution of each subdomain depends on the boundary conditions given by the perforated pipe 
over Γp. The impedance relates the pressure difference in both sides of the perforated pipe with 
the particle displacement or velocity [1], and therefore the acoustic fields in each region are 
coupled. However, two independent modal problems can be considered in each subdomain, 
corresponding to zero pressure and zero velocity conditions on the perforated boundary. These 
problems have analytical solution for circular and elliptical cross-sections, which are widely use 
in automotive mufflers. For more complex geometries, a numerical solution is possible. Thus, 
the transversal pressure field in each region is expressed by means of 
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where P
rφ  and V

rφ  are the modal pressure fields in this region considering zero pressure and 

zero velocity boundary conditions in the wall of the perforated pipe, respectively, and P
rq  and 

v
rq  are participation factors. For a practical solution, the series in Eq. (6) are truncated to a finite 

number of modes m, and then one has, in matrizant notation 
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Once the transversal pressure has been established, weighted residuals and Galerkin approach 
are applied to the Eq. (3). A normal pressure gradient is considered as boundary condition over 
Γp. It yields 
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where kt has been replaced as a function of kz. The previous matrices are defined as 
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being Ω the subdomain considered, ξn the particle displacement normal to boundary Γp and ρ0 
the fluid density. The vector { }F  is easily derived considering the linearized Euler equation  
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Eq. (8) can be expressed as 
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where [ ] [ ] [ ] [ ] [ ] [ ] [ ]M)M1(1MandMkM21C,MkK1K 22 −==−= . The previous procedure can 
be applied to both regions (with M = 0 for region A), leading to 
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and, in a compact notation, 
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Both subdomains are related by means of the perforate impedance. The relation A

n
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admittance of the perforated pipe. The modal description of the pressure fields gives 
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and therefore the vector { }BF  can be written as 
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Following the same procedure, for M = 0, the load vector associated with region A is 
 

 { } [ ]{ } [ ]{ }BAB
p

AAA
p

A qKqKF +=  (18) 
 
The consideration of both subdomains yields 
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Thus, Eq. (15) can be written as follows 
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where [ ] [ ] [ ]ABABAB 1Mand1C,1K  are real symmetric matrices with constant coefficients, [ ]pK  is 

a complex symmetric matrix with frequency-dependent coefficients and [ ] [ ]2p1p KandK  are 

complex non-symmetric frequency-dependent matrices. For a given frequency ω, Eq. (20) 
enables to obtain the eigenvalues kz,s and the associated eigenvectors { }sq , which can be 

divided into incident and reflected terms { } { }−+−+
sss,zs,z qandq,k,k . The number of eigenvectors 

that can be obtained is equal to the dimension of the problem, that is, ( )1m22 +⋅ . The 
transversal modes are then evaluated from the modes defined initially for each subdomain and 
the eigenvectors of Eq. (20) 
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The solution is approximated and the perforated boundary condition is not satisfied exactly, 
which can be used as an error indicator. The acoustic pressure in each subdomain can be 
finally obtained by modal superposition of a given number mt of modal terms that ensure an 
acceptable accomplishment of the perforated conditions, 
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Finally, the acoustic velocity is evaluated in each region as 
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In order to obtain the pressure and velocity fields, it is necessary to evaluate the propagation 
coefficients −+−+

ssss BandB,A,A . The procedure is based on the mode-matching technique, and it 
is briefly described in the next section. 
 
2.2 Mode-Matching at the area discontinuities 
 
For a given muffler, such as this shown in Figure 1, the propagation coefficients of the pressure 
and velocity fields given by Eqs. (23) and (24), and those associated with the inlet and outlet 
pipes, can be evaluated by means of the application of the mode-matching method in the area 
discontinuities (expansion and contraction). The pressure and velocity conditions in the 
expansion are 
 

( ) ( ) ( ) ( ) ( ) AABBInletBBInlet Son00,y,xu;Son0,y,xu0,y,xu;Son0,y,xp0,y,xp ===  (27) 
 
and for the contraction 
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being L the chamber length. The details of the mode-matching procedure can be found, for 
example, in [7]. Once the propagation coefficients have been evaluated, it is possible to analyse 
the acoustic performance of the muffler by means of its transmission loss (TL). 
 
 
 
3. RESULTS AND DISCUSSION 
 
An axisymmetric muffler (circular concentric resonator) is considered for illustration purposes, 
and two different chamber lengths L = 0.15 m and L = 0.3 m are analysed. The radii of the inlet 
and outlet pipes are 0.025 m, and the radius of the chamber is 0.085 m. The perforated pipe 
impedance is supposed to be given by means of the expression [1] 
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Here, t is the thickness of the perforated pipe, dh the hole diameter and σ the porosity. The 
values t = 0.001 m, dh = 0.003 m and σ = 5% are considered to carry out the calculations. In 



addition, three values of the mean flow velocity are included in the analysis, M = 0.05, 0.1 and 
0.15. Figure 2 (a) shows the results for the chamber length L = 0.15 m, which have been 
evaluated by means of the present approach. Comparison is given with FEM calculations, with 
a good agreement in general. The TL is strongly affected by the mean flow value, as expected, 
and it is shown that a lower Mach number leads to a higher attenuation in the low frequency 
range, while the opposite trend is observed for higher frequencies. The same comments can 
applied to Figure 2 (b), in which a chamber length L = 0.3 m is considered. Now, the increase in 
the length leads a higher number of attenuation domes. 
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Figure 2. TL of a concentric resonator. (a) L = 0.15 m. (b) L = 0.3 m: , M = 0.05, modal method; 

 ο, FEM;   , M = 0.1, modal method; +, FEM;   -  , M = 0.15, modal method; ×, FEM. 
 
 
4. CONCLUSIONS 
 
A modal substructuring method has been developed for the study of the acoustic performance 
of mufflers with uniform cross-section and a perforated pipe carrying mean flow. The proposed 
method predicts the acoustic attenuation without any loss in accuracy in comparison with FEM 
calculations, and reduces the computational requirements. It can be applied to simple 
geometries such as circular and elliptical mufflers, for which the pressure modes can be 
obtained analytically, or complex geometries for which the modes are evaluated numerically. 
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