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ABSTRACT 

For the prediction of acoustic performance of an engine intake system with porous woven 
hose, the wall impedance of the hose must be known in the presence of mean flow. Here, the 
acoustic impedance is inversely estimated from an overdetermined set of measured pressure 
transmission coefficients for specimens of different lengths and the reflection coefficient of end 
termination. The method involves only one measurement, and, as a result, it is very simple. The 
measured TL for samples with arbitrary conditions, arbitrary porous frequency, arbitrary length, 
and arbitrary mean flow condition, agree very well with values predicted from curve-fitted 
impedance data. 
 
 
1. INTRODUCTION 

Recently, wire-reinforced porous tubes of woven fabric coated with acrylic resin have been 
introduced into the intake systems of many internal combustion engines for purposes of 
reducing noise radiated from the snorkel opening. Resonators in an intake system, for 
suppressing acoustic resonances and adverse effects due to installing a resonator for a 
frequency, can be replaced by one section of a porous woven hose [1]. An added advantage of 
a porous woven hose is its flexibility, which permits the system layout and isolation of 
transmitted vibration to be readily achieved. Because of this, the porous woven hose is now 
considered to be a very promising and efficient silencing component in spite of its relatively high 
cost. It should be noted that the overall physical characteristics of a porous woven hose have 
been rated by a single-figure parameter, viz., porous frequency, which is mainly affected by the 
length, radius, material, weaving quality, and coating conditions [2]. 

 
Although the porous woven hose has now been adopted in a number of engine intake 

systems, its acoustic performance has not previously been predicted well because of the 
difficulty in measuring the acoustic impedance [1,3]. The inverse estimation method [4] utilizes 
only one measurement setup and, thus, it is relatively simple compared with the two-step 
estimation method [1]. In this paper, the inverse estimation method [4] is improved in the 
presence of mean flow. After the present method was experimentally applied to actual hoses, 
the empirical curve-fitted model of the measured impedance was used for predicting the 
acoustic impedance of a hose with an arbitrary porous frequency and mean flow. A comparison 
between the predicted and measured TL, in the presence of typical mean flow at automotive 
intake system, is shown in order to demonstrate the accuracy and effectiveness of the proposed 
technique. 
 
 



2. THEORETICAL BACKGROUND OF MEASUREMENT 
 
A. Transfer matrix 

Consider a sound field within a porous woven hose with a mean flow as depicted in Fig. 1. An 
acoustic source exists at one end of the duct and a linear passive termination is located at the 
opposite end. The duct walls at regions A and B are assumed to be rigid and no active source 
exists inside the whole duct system except the source speaker. The sound pressure and particle 
velocity of the plane waves propagating axially inside the duct can be written as [5] 
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Here, the subscripts A, B, p refer to duct A, duct B, the porous tube, respectively, the 
superscripts '+' and '-' denote the incident and reflected pressures, respectively, zk ±  and rk ±  
denotes the forward and backward complex propagation constants in the axial and radial 
direction, respectively. P(z) denotes the acoustic pressure at position z, u(z) the particle velocity 
at position z, 0 0k cω= , 0c  the speed of sound, 0ρ  the density of the fluid medium, ω  the 

angular frequency, ir  the inner radius of porous woven hose, nZ  the normal impedance at 

ir r= , i.e., at the inner wall of porous woven hose, M the mean flow Mach number, S indicates 
the cross sectional area of the duct A and B. By adopting the acoustic pressure and velocity as 
two state variables, the relation between the upstream and downstream parameters can be 
obtained as follows:  
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Here, the four-pole parameters in Eq. (9) can be expressed as 
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where SP (=πr2
i) is the sectional area of the porous woven hose. 

 
 
B. Relation between four-pole parameters and pressure transmission coefficient 

The pressure transmission coefficient τ is defined as the ratio between the incident and 
transmitted acoustic pressure. For a porous woven hose section, the pressure transmission 
coefficient τ can be described in terms of the foregoing four-pole parameters as 
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Ignoring the radiation impedance, the relation between normal impedance nZ and impedance of 
porous woven hose pZ  can be written as [1] 
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where ro is the outer radius of the porous woven hose. 
 

Note that the pressure transmission coefficient τ can be expressed by the measurable 
quantities such as the measured transfer function, Ht relating the sound pressures at two sides, 
A and B, and the pressure reflection coefficients at the upstream and downstream side, 
respectively, which are defined as A A AR P P− += , B B BR P P− += : 
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C. Inverse estimation of acoustic impedance 

Using the same experimental setup for the measurement of transmission loss, τ and RB can 
be measured. Figure 2 shows the measurement setup, performed for an overdetermined set of 
N porous woven hose samples which differ in lengths but have the same porosity or 
weaving/coating structure. In this study, the multiple microphone method [6] was adopted for the 
direct measurement of in-duct acoustic properties such as TL, τ, RB. Substituting these 
measured in-duct acoustic properties into Eqs. (7), (8), (11)~(13), the acoustic impedance can 
be obtained by using the following least-square technique. It should be recalled that k z is a 
function of β, i.e., τ is a function of the impedance of porous woven hose. If each of the N data 
can be expressed by the following data format as 

 ( )01 , , , ,i i B i
k M L Rτ  ( 1,2, ,i N= L ), (15) 

then the problem is to estimate the values of the parameters, which are subject to minimize the 
following quantity: 
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Here, the parameter β refers to the ‘population value’ as defined in Eq. (15) and the value of 
1/τi=Fi(β;k0,M,Li,RB|i) of the ith specimen refers to the ‘expected value’. 
 
    By using the Taylor series expansion near β=β0 and truncating to the linear terms, one 
obtains 
 A Yδ = , (17) 
where 
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Because the perturbation δ  in Eq. (18) is a linear function in β, it can be determined from the 
standard least-square sense, viz., ∂Φ/∂δ=0. The least-square solution of Eq. (17) can be 
obtained by using the generalized inverse. The actual computation is carried out in the following 
manner: First, the initial estimate is assumed to be β01. δ can then be obtained by using the 
generalized inverse and the new estimate β02 can be obtained from the relation,  β02=β01+δ. Next, 
by using the new estimate β02, the first step is repeated. This calculation loop is repeated until 
the error δ� is smaller than the preset convergence criterion. From this simple numerical iteration, 



the population value β, indicating the normalized acoustic impedance of porous woven hose, 
can be obtained [4]. 
 

3. RESULTS AND DISCUSSION 
Because the range of porous frequency, fp, typically employed in an automotive intake system 

is about 100-600 [2], the experiments were performed with samples within this practical range. 
In the intake system of a typical engine, the mean flow Mach number is usually below 0.1M. 
Therefore, the experiments were performed using M=0, 0.034, and 0.081 in an anechoic 
chamber. Figure 2 shows the measurement setup. A signal analyzer (B&K3560) was used to 
feed the stationary random signal for the acoustic driver mounted at one end of the duct and to 
calculate the spectra from the measured signals. The acoustic transfer functions were 
measured with flush mounted 1/4-inch microphones (B&K 4135). The Reynolds number of the 
flow was of the order of 104 at the measurement conditions used and the correlation technique 
was adopted to suppress the flow-generated noise from the turbulent flow. [6] The reference 
sound pressure, measured at the microphone position located 1.5 m upstream to the actual 
measurement sensors, was used as the reference signal, for implementing the correlation 
technique. 

 
Figure 3 shows the measured impedance by using the aforementioned method with mean 

flow conditions of M=0, 0.034, and 0.081. These values were measured in the frequency range 
of 180-1500 Hz because the source power was not sufficient below 180 Hz. In this 
measurement, two specimens with different lengths of L=300, 393 mm were selected. As can 
be easily expected, the variation of impedance becomes large, with increasing mean flow 
velocity. The effect of mean flow on the resistance is significant, particularly in cases of low 
frequencies, long tube, and high flow velocity. In the presence of mean flow, the resistance 
becomes small as the frequency increases, whereas the resistance is nearly constant with a 
change in frequency in the absence of mean flow.   

 
The acoustic impedance for an arbitrary porous frequency can be estimated by curve-fitting 

the measured impedance data, such as the data in Fig. 3, as a database [1], which makes use 
of measured impedance data for the conditions of M=0, 0.034, and 0.081, and fp=200, 400, and 
600. The fitting function is assumed to have the linear relation among frequency, porous 
frequency, Mach number, and impedance [1]: 
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Figure 4 show a comparison of the measured and predicted impedances under arbitrary 

parameter conditions. A comparison between the predicted and measured TL is shown in Fig. 5 
to demonstrate the effectiveness of the proposed technique. As can be observed in Fig. 5, the 
predicted TL agrees very well with the measured TL, for porous woven hoses at arbitrarily given 
conditions of length (L=480 mm), porous frequencies (fp=100, 300, 500), and Mach number 
(M=0.058).  
 
 
4. CONCLUSION 

This study has focused on improving the inverse estimation method [4] for the acoustic 
impedance of a porous woven hose in the presence of mean flow. In the inverse estimation 
method, the acoustics impedance was iteratively estimated in the least-square sense from the 
overdetermined set of the measured pressure transmission coefficients of the specimens and 
the reflection coefficient of termination. The other advantage of this measurement method is that 
the measurement setup could be also used for the direct measurement of transmission loss. 

 
The impedance for a sample with an arbitrary porous frequency and mean flow was predicted 

by means of the general curve-fitting method based on the measured impedance data at 
various parameter conditions. From the curve-fitting model, if the information on ordinary 



frequency, Mach number, and porous frequency of the porous woven hose is specified, one can 
easily obtain the acoustic resistance and reactance of a given hose. It was noted that the 
predicted TL for porous woven hoses of an arbitrary length, arbitrary porous frequencies and 
arbitrary mean flow condition are in reasonably good agreement with the measured TL values. It 
is thought that the proposed measurement techniques can be applied to the general acoustic 
duct system having a compliant wall or having a sound-absorbing wall. 
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Fig. 1. The sound field in the porous duct system. Pressures designated with the superscript '+' 
denotes the positive-going (i.e., downstream) waves and those with '-' denotes the negative-
going (i.e., upstream) waves. M denotes the flow Mach number.  
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Fig. 2. The setup for the measurement of the in-duct acoustic characteristics of a porous woven 
hose. 
 



 
( a )                                        ( b ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. An example of measured acoustic impedance of porous ducts varying the mean flow 
conditions (fp=300). (a) Resistance, (b) reactance. 
 
 
 
( a )                                        ( b ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. A comparison of the measured impedance and the predicted one by using the curve 
fitting model. Symbol and thin line, measured impedance; thick line, predicted impedance for 
M=0.058. (a) Resistance, (b) reactance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. A comparison of the measured and predicted transmission loss (TL): Prediction was 
made by employing the calculated impedance from the the curve fitting model. Symbols, 
measured TL; thick solid lines, predicted TL (M=0.058, 2ri=55 mm, L=480 mm). 
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