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ABSTRACT

An auditory Mellin transform has been
proposed to segregate information about the
size and shape of the vocal tract
automatically; the process is also
independent of glottal pitch. In this paper, we
describe a method for resynthesizing speech
from the Mellin representation using a high
quality vocoder (STRAIGHT), and a nonlinear
function to map between the two
representations of speech. This enables us
to replay the coded speech to evaluate the
glottal event detector that precedes the
Mellin transform, and the spectral information
recovered from the Mellin representation.

 

1. INTRODUCTION
Speech analysis/synthesis schemes based

on vocoders [1] are an essential tool in
speech research and signal processing.
Traditional vocoders include linear predictive
coding (LPC)  which is essentially spectral
analysis in a linear frequency domain; they
are common in mobile phone systems.
Recently, STRAIGHT [2] was used improve
the sound quality of a research vocoder by
adaptively manipulating the Short-Time
Fourier Transform (STFT). In addition, a mel,
log-spectral approximation filter (MLSA) [4]
was developed to resynthesize speech from
mel-frequency cepstral coefficients (MFCC)
within the vocoder framework. Another
vocoder method based on MFCC was also
proposed for speech morphing [19].

The success of MFCC in automatic speech
recognition (ASR) [3] is often attributed to its
auditory origins, but the cepstral calculation
following the mel-spectral analysis is cannot
be justified in terms of auditory processing.
The windowing in the mel-spectral calculation

eliminates fine temporal detail that human
listeners hear [5]. The purpose of this project
was to develop a method of resynthesizing
sounds from a better auditory representation
in an effort to improve speech morphing,
noise suppression, and speech segregation.

Auditory models are analysis systems by
nature; they do not normally include
resynthesis since perception does not require
resynthesis. Simple analysis/resynthesis
systems have been produced with the
wavelet transform and linear filterbanks on
Mel, Bark, or ERB scales. The sounds can be
resynthesized from the output of the filterbank
when all of the magnitude and phase
information is preserved. Sound resynthesis
from a nonlinear, level-dependent filterbank
has also been achieved using the
gammachirp auditory filterbank [6,7]. An
iterative method has also been developed to
resynthesize sound from an auto-correlation
representation computed after auditory
spectral analysis [8], although local minima
prevent derivation of a unique mapping from
the autocorrelation representation. Unlike the
vocoder, however, these resynthesis schemes
do not support modification of the coded
speech, such as fundamental frequency (F0)
conversion or spectral morphing.

We have previously proposed an "Auditory
Vocoder" [16,17] to resynthesize speech from
an auditory representation referred to as the
Mellin Image (MI) [9,10] that segregates the
size and shape information of incoming
sounds. The idea was to link the two F0-
independent representations produced by the
MI and STRAIGHT [2]. In this paper, we
introduce event-synchronous processing into
the Auditory Vocoder to improve the sound
quality, and demonstrate the importance of
glottal event detection in these systems.



Section 2 explains the system architecture
and the signal processing applied by each
module. Section 3 describes the effect of the
system in terms of mapping error and sound
quality. Section 4 describes some potential
applications of the system.

2. SYSTEM ARCHITECTURE AND
PROCESSING

The system (Fig. 1) has three components:
STRAIGHT, the Auditory Mellin Image, and a
mapping block to link them together.

2.1. STRAIGHT
STRAIGHT [2] is fundamentally a vocoder

with analysis and synthesis sections. During
the analysis, the F0 is accurately extracted to
smooth out the periodic bouncing inherent in
short-term spectral analysis. The resulting
STRAIGHT spectrum is essentially F0
independent. During the synthesis,  pulses or
noise with a flat spectrum are generated in
accordance with voicing information and the
F0. The speech is then resynthesized from
the smoothed spectrum with the pulse, or
noise, component using an inverse FFT and
the overlap-add technique.

2.2. Auditory Mellin Image Model
The auditory model used to produce the

Mellin Image [9,10] is based on the Auditory
Image Model of perception [12,13]. The
model  performs its spectral analysis with a
gammatone filterbank on the ERB scale. The
output is half-wave rectified and
logarithmically compressed. Then, adaptive
thresholding is applied in each channel to
produce a simple form of Neural Activity
Pattern (NAP). The NAP is then converted
into a Stabilized Auditory Image (SAI) using a
very simple strobe mechanism [11]. It is like
calculating the times between neural pulses
in the auditory nerve and constructing and
array of time-interval histograms, one for
each channel of the filterbank.

In this project, an event detector was
introduced to locate glottal pulses accurately
for use as strobe signals, and to estimate F0
accurately. The glottal pulse is extracted from
a temporal profile of the NAP after
compensation for the group delay in the
gammatone filterbank. The local peaks of the
summary NAP are extracted as event
locations using an algorithm similar to
adaptive thresholding [12]. The performance
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of the event detector is described in section
3.

The vertical axis of the SAI is ERB
frequency; the horizontal axis is ’time-interval
from the strobe point’. A glottal segment with
width 1/F0 is extracted from the SAI to render
the representation independent of F0. The
segment is, then, converted into a Size-
Shape Image (SSI) whose abscissa, h, is the
product of Time-Interval and Filter-Frequency;
the ordinate remains ERB frequency. The
Mellin Image (MI) is derived from the SSI
using spatial-frequency decomposition (or
high-resolution, cepstral decomposition);
complex sinusoids are applied along each
line of constant h in the SSI. The vertical axis
of the MI corresponds to cepstral order; the
horizontal axis remains the time-interval/peak-
frequency product, h [9,10].

The vertical profile of the MI, averaged
across h, is similar to the mel-frequency
cepstral coefficients (MFCC) derived from an
F0-independent spectral representation. The
MFCC derived from the STFT is essentially
F0-dependent because of periodic spectral
ripples.

We developed a new version of the
auditory image model to evaluate the role of
glottal event detection in SAI production, and
the quality of the  spectral information in the
MI. The timing of glottal pulses was explicitly
extracted from the NAP, as input for the
mapping function and to enable event-
synchronous construction of the Mellin
Image.

2.3. Mapping block
We developed a function to map between

the Mellin Image and the STRAIGHT
spectrum; both are essentially F0-
independent representations.
2.3.1. Strategy

The STRAIGHT spectrum was converted
into a form of MFCC representation that
corresponds to the vertical profile of the MI.
Conventional mel-cepstral analysis does not
include an analytic method for perfect
inversion to a spectral representation. We
substituted an orthogonal function, namely
warped-frequency DCT, for both mel-cepstral
analysis and synthesis as described in
section 2.3.2. Then, a nonlinear Multiple-
Regression Analysis (MRA) was used to map
between the two MFCC-like representations
as described in sections 2.3.3 and 2.3.4.
2.3.2. Warped frequency DCT

The logarithmic magnitude of the
STRAIGHT spectrum was converted into a
cepstral representation using a warped-
frequency version of the Discrete Cosine
Transform (DCT); specifically,
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The real part of the frequency response of
this filter, Re[ ( )]Ψm ω , is a normalized,
orthogonal function when { | }ω ω π0 ≤ ≤ .  α  is
a coefficient which determines the degree of
frequency warping [12] given by

 ˜ arctan{ sin /( cos )}ω ω α ω α ω= + −2 1 .    (2)
When α  is zero, Re[ ( )] cos( )Ψm mω ω= , which is
a discrete cosine. When α  is between 0 and
1, Re[ ( )]Ψm ω  corresponds to a cosine
component defined on the warped frequency
scale, ω̃ , with a weighting function to
maintain the orthogonality. So, the real
function, Re[ ( )]Ψm ω , is used as a kernel for a
warped-frequency version of the DCT, and
hence the name, warped-DCT . It is also real.
When the sampling frequency is 12 kHz and
α = 0 56. , the warped frequency scale, ω̃ , is
close to the ERB scale.

 The warped-DCT coefficients were
calculated from the smoothed, log-magnitude
spectrum of STRAIGHT. A simple warped-
DCT analysis and synthesis of the
STRAIGHT spectrum does not affect the
sound quality appreciably when the maximum
order, m, is 30.
2.3.3. Arrangement of the mapping function

We performed event-synchronous
mapping (Fig. 2) based on the output of the
new glottal event detector in the MI module
of the analysis/systhesis system (Fig. 1). The
new function simplified the mapping as
compared with that described previously
[16,17], and enabled us to improve the
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quality of the synthetic speech at the same
time.

The Mellin Image (MI) is two-dimensional,
and an image is produced for each event
detected; whereas, the warped-DCT
coefficients have the same frame rate as the
STRAIGHT spectrum (1 ms in this case). As
noted above, the vertical axis of the MI
corresponds to cepstral order. The spatial
frequency, c /( )2π , is defined as cycles within
the range of the ERB scale (100-6000 Hz)
[9,10], and so a c /( )2π  value of m / 2
corresponds roughly to the mth order of the
warped-DCT coefficients. Figure 2 shows the
arrangement of the mapping function
between the MI ( c /( )2π  value of m / 2) and
the warped-DCT coefficients ( mth order). The
mapping procedure is described for an
arbitrary value of m in the 2.3.4. The
procedure is repeated for  all m values
between 0 and 30. Note that only the real
part of the MI was mapped into real warped-
DCT coefficients. That is, the size
normalization of the MI was ignored in this
implementation.
2.3.4. Choice of the mapping function

The MI is produced by a highly non-linear
process: log-compression and adaptive
thresholding in the NAP, followed by non-
linear temporal integration. The STRAIGHT
spectrum is also nonlinear albeit to a lesser
degree. So, nonlinear, Multivariate
Regression Analysis (MRA) was introduced to
accommodate the difference in the number
of coefficients and the nonlinearities.

We have adopted a form of nonlinear
MRA that avoids iterative calculation for
computational efficiency. It also enables us
to avoid the problems associated with local-
minima and over-learning inherent in iterative
learning. A method developed for nonlinear
Auto-Regressive (AR) analysis [15] was
modified to produce the nonlinear MRA since
the mathematical formulation is quite similar.
This nonlinear MRA also includes the linear
case in the formulation.

The explanation variable of the MRA is
the m / 2 th vector of the MI extracted at the
event time. The vector was set to
x k k k kpx x x= { , , ..., }1 2  for the k th MI (i.e., the k th
event). The dependent, or response, variable
was the mth warped-DCT coefficient derived
with STRAIGHT at the event time. The
response variable was set to yk .  

Once the mapping parameter is estimated
from training data, the analysis part of
STRAIGHT is no longer required. The speech
is analyzed by the auditory Mellin model. For
every event, the warped-DCT coefficients are

recovered by MRA. Coefficients for
intervening 1-ms bins were interpolated
linearly. Then the STRAIGHT spectrum was
recovered by inverse warped-DCT and
exponentiation (The previous study [16]
employed approximate inversion of the
logarithmic function; the current algorithm
employs precise inversion.)  The speech was
resynthesized using the pulse/noise
generator and the F0 and voicing information
extracted with the auditory model in Fig. 1.  
2.3.5. Nonlinear MRA

 We used the following nonlinear MRA
model for yj ,

y x xk i i k ki
i

p

k= + − +
=
∑{ exp( )}φ π γ ε2

1

    (3)

where φi , π i , and γ  are model parameters,
x

ki
 is the i th component in the vector for the

k th MI, x
k
 is the average value of x

ki
 for all i ,

and ε k  is an error term. This formulation
reduces to linear MRA when π i = 0 .
In the original paper on nonlinear auto-
regressive analysis[15], the maximum
likelihood (ML) estimate is shown to be
approximated by the least squared error
(LSE). So, we used the LSE for estimating
parameters φi  and π i  when γ  is a constant.
In this case, matrix algebra can be used to
solve the problem without iteration. The
equation for all data is

Y X= +β ε      (4)
β φ π φ π φ π= ( , , , , ... , , )1 1 2 2 p p

T          (5)

x k k k k kp kp k

T

x x x x x x= − −( )1 1

2 2, exp( ), ... , , exp( )γ γ  (6)

X N

T= ( , , ..., )x x x1 2         (7)
Y y y yN

T= ( , , ..., )1 2 .                               (8)
The parameters are estimated using LSE as

ˆ ( ' ) 'β = −X X X Y1      (9)
which is the same formalization as linear
MRA. This is an important advantage of this
model.

It is, however, necessary to determine the
constant, γ , in advance. Following the
method used in the nonlinear AR model [13],
we determined γ   using εγ = 0 00001. , the
maximum of the average value xk , and a
factor Aγ .

Table I, RMS error in dB for closed and open data
for variation of the speaker and MRA.

Male (MHT) Female (FTK)

Linear

MRA

Nonlinear

MRA

Linear

MRA

Nonlinear

MRA

closed -15.9 -16.8 -15.4 -16.7

open -15.0 -15.7 -14.4 -15.6



γ εγ γ= − ⋅
≤ ≤

A x
k N kln / max )

1

2( (10)

The degree of the fit depends on the value
of Aγ . So, we varied Aγ  and re-estimated the
parameters to find the model that minimized
the error.

3. EXPERIMENTS

3.1. Data and conditions
We used male (MHT) and female (FTK)

speech from an ATR database of 503
sentences to estimate and evaluate the
mapping function. The sampling rate for
STRAIGHT and the warped-DCT was set to
12 kHz to match the frequency range (100
Hz - 6kHz) of the auditory filterbank of the MI
where the sampling rate was 20 kHz. The
number of the data, N , used to estimate the
mapping parameters was 10000 which
corresponds to about 16 sentences (8 male
and 8 female). The vector length was 21 for
h values of between 0 and 5 in the MI. So,
the length of the explanation vector x

k
for

one MI in Eq. 6 was 42 for the nonlinear
case and 21 in the linear case where the
response variable, yk ,  is a scalar.

3.2. Error in the warped-DCT domain
The resulting mapping function was

evaluated in the warped-DCT domain. Table I
shows the rms error between the original and
mapped warped-DCT coefficients for the
sentences used in the parameter estimation
(closed, sentences: MHT_A01 for male and
FTK_A01 for female) and in the test (open,
MHT_A50 and FTK_A50). The error unit is
dB, that is, the relative value of the rms
amplitude for all of the warped-DCT
coefficients. Larger negative values indicate
a better fit. The nonlinear parameter, Aγ , was
not particularly sensitive and so it was set to
1.  

The nonlinear MRA is always effective; the
improvement is between -0.7 and -1.3 dB.
The rms errors for the closed data are better
than the errors for the open data, but the
difference is a maximum of 1.1 dB. The
differences between male and female
sentences are less than 0.1 dB for nonlinear
MRA and 0.6 dB for linear MRA. The results
show that the mapping function is sufficiently
general to  accommodate the variation
between sentences and speakers in this
data set.

The error values are much smaller than in
the previous report where they were between
-7.6 and -13.8 dB [16,17]. Moreover the
differences between conditions are smaller
than in the previous results. Both of these
improvements are due to the introduction of
the event-synchronous processing for the MI.

3.3. Waveform and sound quality
Figures 3(a) and 3(b) show the waveforms

of the original sound, MHT_A01, and the
sound resynthesized from the STRAIGHT
spectrum with the warped-DCT
decomposition (0th - 30-th order). The
waveforms are very similar. The sound quality
is virtually the same as that produced by
STRAIGHT without warped-DCT
decomposition; the difference would probably
be inaudible over loud speakers.

Figures 3(c) and 3(d) show the waveforms
of the sounds resynthesized from the MI
using linear and nonlinear MRA. The
waveforms are quite similar to those in Fig.
3(b) and the sound quality is good but it is
not as close to the original as the STRAIGHT
sound with warped-DCT decomposition.
There is almost no difference between the
versions of MI sound produce with linear and
nonlinear MRA.  The event-synchronous
method successfully eliminates the intrusive
clicks  reported previously [16,17]. So, the
new resynthesis framework works reasonably
well.

The difference between the STRAIGHT
and MI resynthesis is caused partly by errors
in the mapping function and partly by
inaccuracies in the  event detection, both of
which would appear to be amenable to
improvement by standard techniques.

4. APPLICATIONS
The discussion to this point has

concentrated on the processing and
evaluation of the Auditory Vocoder. This
section considers potential applications for
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perceptual experiments and signal
processing.

4.1. Perceptual experiments
The current system segregates glottal

event information and spectral information,
and then combines them for playback. It is
possible to resynthesize with a click train
composed of impulses located at the event
times. Although the click train contains no
spectral information, the sentence is
recognizable after having heard the original
speech once. Shannon et al. [18] have
performed psychophysical experiments on
temporal cues in speech which relate
recognition performance to the degree of
spectral information preserved in resynthesis.
They used bandpass filters to shape the
spectra. Since the warped-DCT is an
orthogonal transform, it is possible to
manipulate spectral information more
systematically than with simple bandpass
filters. It would be interesting to compare
human perception with the auditory
representation in this type of psychophysical
experiment.

4.2. Speech processing applications
One long standing problem in speech-

synthesis research is quantitative evaluation
of the sound quality. The problem arises not
only with text-to-speech synthesis, but also
with audio coding, and noise suppression.
The current method may enable us to
evaluate the synthesis of all such
applications within a unified framework.

5. CONCLUSIONS
An Auditory Vocoder is proposed to

resynthesize sound from the auditory Mellin
Image using STRAIGHT. The procedure
circumvents the iterative process required in
conventional auditory resynthesis. The sound
quality is much improved by introducing
event-synchronous processing.  It may be
possible to use the system to implement
auditory forms of speech morphing, noise
suppression and stream segregation.
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