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ABSTRACT : The high-frequency behavior of the dynamic fluid permeability is studied 
assuming that the fluid-solid interface appears flat locally. We give a new derivation/expression 
of the viscous characteristic length Λ . The effect of wedge-shaped intrusions of fixed apex 
angle is incorporated in an additional higher-order term, non analytic on the viscous skin depth 
parameter. Precise numerical simulations confirmed the derived dependency on the apex angle. 
 
 
1. INTRODUCTION  

By definition, the dynamic fluid permeability )(ωk  describes the (linear) response of a simple 
incompressible fluid entrained in a rigid porous  medium and subjected to a harmonic pressure 
drop across the sample. This response has been the subject of numerous studies and is 
involved in different problems and applications. As an example, the dynamic permeability is the 
fundamental ingredient to describe sound propagation in a fluid-saturated rigid-framed porous 
medium as long as the wavelength is large compared to the characteristic sizes of pores and 
grains in the medium. The same notion applies when the fluid is a liquid or a gas, and, relaxing 
the assumption of a rigid frame it may be incorporated in the Biot theory [3] . 
 
Under the assumption that the fluid-solid interface appears flat locally if the viscous skin depth 
δ is small enough, Johnson, Koplik & Dashen  [8]  have obtained the high-frequency result   
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Here, 2/)1(/ δωνε ii +=−=  is the complex viscous skin depth parameter; φ , ∞α  and C  
are purely geometrical parameters, respectively the porosity, tortuosity, and Λ= /2C  is such 
that the “viscous characteristic length” Λ  coincide with the pore-size parameter characterizing 
transport introduced by Johnson, Koplik & Schwartz [9]. We first re-derive the result (1), 
clarifying one discrepancy with another expression [15,18] of the Λ parameter.  
 

The next term in the bracket is expected to be )( 2εO  when the interface has everywhere 
bounded curvature. Then considering a rugged geometry in the form of  2D corrugated pore 
channels with wedged-shaped intrusions (see Fig. 1) we derive the high-frequency result  
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where the exponent w  ( )21 << w  is related to the apex angle γ  ( πγ <<0 ) of the wedges : 
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We note that the relation (3) is somewhat different from the one proposed in [1], this 
discrepancy being clarified in the same manner. Precise numerical simulations confirmed the 
result (3).   



2. THE JOHNSON ET AL. HIGH-FREQUENCY DEVELOPMENT (1) 
 
2.1 Definitions and general relations. We define the scaled velocity field v~ , which solves the 
following oscillating Stokes flow problem : 

evv +∆+−∇=− ~~~2 pε ,        0~ =⋅∇ v ,   in pV , (4a,b) 

             0v =~ ,             on pS , (4c) 

 p~  stationary,      (4d) 

where e  is the unit macroscopic pressure gradient. ( pV  is the pore volume and pS  the pore 

surface). The dynamic permeability is, by definition, the direct pore volume average [15,18] 
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Similarly, we define the scaled “electric” field E , which solves the electrical conduction problem  
    eE +Φ−∇= ,      0=⋅∇ E ,    in pV ,  (6a,b) 

               0=⋅nE ,              on pS , (6c) 

    Φ  stationary,      (6d) 
where n  is the unit outward normal from the pore region. By definition, E  is the microscopic 
electric field induced in the pore space when a unit macroscopic electric field e  is applied, 
assuming insulating solid phase and uniform conductivity in the pore space.  Its pore volume 
average is directly related to the tortuosity ∞α  [8, 2] :   
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We note that the word “stationary”  [14] means that the fields keep constant pore averaged 
value (on the average they do not increase or decrease in the direction of e ). Using integration 
by parts it is easily verified that, if ϕ  is a stationary field there is the orthogonality relation 

    0=∇⋅∫ pV
dVϕw ,     (8) 

for any divergence-free field w having zero normal component on the pore surface. Thus, the 
dynamic permeability and tortuosity factor may be written in equivalent form  
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2.2 High-frequency velocity pattern. We now consider the high-frequency limit 0/ →Lε  of the 
scaled field v~ , where L  is a characteristic pore size. As argued by Johnson et al. [8], except 
for a boundary layer of thikness δ near the pore walls, the fluid motion is given by potential flow. 

To leading order we have, Ev →− ~2ε  and Φ→p~ , in the bulk potential flow region. A more 

exact replacement will be Π∇−→− Ev~2ε  and Π+Φ→p~ , with Π  a small )(εO , stationary 
perturbation induced by the presence of the boundary layer. Assuming that the bounding 
surface of the pores appears flat locally if the viscous skin depth δ is small enough, the 
perturbation term may be determined by introducing in the analogous electrical conduction 
problem a layer of variable, vanishing conductivity near the pore walls. The variable conductivity 
is chosen so as to generate for the current the known variations of the tangential components of 
the velocity field in the boundary layer. Then, the divergence-free nature of the current 
necessarily implies, when the interface has a non trivial shape, the existence of normal 
components near the pore walls that will act as a source for the perturbed potential current in 
the bulk.  Owing to the assumption of locally plane pore walls, the tangential components of  the 
velocity in the boundary layer may be written, to leading order [10] 



    Ev )1(~ /2 εβε −− −= e ,      (11) 

where β  is a local coordinate measured from the pore walls into the bulk of the pore. We thus 
consider the perturbed, electrical conduction problem 

    ( )Π∇−=− Erv )(~2 σε ,     in pV ,   (12a) 

    0~ =⋅∇ v ,      in pV ,   (12b) 

    Π  stationary,      (12c) 

    εβσ /1)( −−= er .     (12d) 

The field v~2−ε  is the current induced when a unit electric field is applied, for a medium having 
insulating solid phase and conductivity )(rσ  in the pore region. Current conservation gives : 

    σσ ∇⋅=Π∇⋅∇ E)( .     (13) 
In the limit 0/ →Lε , only derivatives normal to the pore walls need to be considered. 
Straightforward integration yields the following velocity pattern in the boundary layer : 
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Note that at the same level of approximation there should be present in (14) higher order 
tangential components that are not obtained in the present reasoning. Setting ∞=δβ /  in (14) 

and (12a)  we derive the boundary condition,  ( ) 0=∂=Π∂ ββββ ε E , which applies on the 

bounding surface of the bulk potential flow region. Obviously a negligible error is introduced by 
extending this bounding surface to be that of the actual pore walls.  The velocity field hence 
determined in the bulk is   

    NEv εε +=− ~2 ,      (15) 

where the perturbed field N  is the purely geometrical vector field which solves : 

    0=⋅∇ N ,                in pV ,   (16a) 

     ( ) 0=∂=⋅ βββEnN ,  on pS ,   (16b) 

field)stationary(∇=N .    (16c) 

2.3 High-frequency permeability. Now evaluating the integral (5) the first term ∞αφε /2  in (1) 

comes, on  using (7), from the leading term E  in (15) and the constant tangential term E  in 

(14). The second term ε
α

φε
C

∞

2
 splits in two contributions, leading to the new result :  
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The first is a boundary layer contribution related to the tangential components Eεβ /−− e  in 
(14). The second  comes from the perturbed bulk potential flow Nε  in (15), because 

=⋅∫ pV
dVeN  ∫ Φ∇⋅

pV
dVN  using the orthogonality (8) between Ew =  and N=∇ϕ , and 

the last integral reduces, after integrating by parts, to the boundary integral ∫ ∂Φ−
pS

dSEββ . 

Sheng & Zhou [15,18] erroneously identified Λ/2  to be the first term in the r.h.s. (17) because 

they used the incomplete replacement Ev →− ~2ε . We now show that there is the additional 

identity =Φ∇⋅∫ pS
dSE ∫ ∂Φ

pS
dSEββ . Let 1x , 2x , be any Gauss coordinates on the curved 



pore surface pS , and choose β=3x . Given the transformation µµ ξ↔x   where the µξ  are 

Euclidean coordinates ( x=1ξ , y=2ξ , z=3ξ )  any tensor known in the Euclidean 

coordinates may be expressed in the µx  system. (For the reader convenience the present 
notations allow direct comparisons to be made with the book by Weinberg [17] (Chap. 4)). In 

this manner, we write dSEdSEdSEdS
pSpSpSpS

µ
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µ
µ
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;;; )( ∫∫∫∫ Φ−Φ=Φ=Φ∇⋅E . The 

second integral immediately vanishes because µ
µ

;E  is the divergence of the electric field, 
which is identically zero. The first integral splits in the first two terms 2,1=µ , and the third term 

.3=µ  Owing to (6c), the latter is nothing but ∫ ∂Φ
pS

dSEββ ; the former vanishes due to the 

stationary character of Φ . Thus, the identity is proved and adding both terms in (17) we finally 
obtain, on using (6a) :  
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A more compact derivation is obtained by evaluating the integral (9). The first term ∞αφε /2  is 
obtained as before, on  using (10). The second term then comes uniquely from the boundary 

layer integral of the field 2/ Eεβ−− e , and the Λ parameter is directly obtained in the form (18). 
No bulk contribution arises, because of the orthogonality (8) between E  and  N .  
 
Eq. (18) was obtained by Johnson, Koplik & Dashen [8] using a classical energetic argument 

allowing the use of the simple replacements Ev )1(~ /2 εβε −− −= e  in the boundary layer, and  

Ev =− ~2ε  in the bulk. The role played by the orthogonality relation between the “ground state” 
field E  and the perturbed field was apparent in [9].  
Avellaneda & Torquato [2] (Appendix D) tried to clarify the reason for the discrepancy with Ref. 
[18]. The role played by the existence of normal components of the velocity near the pore walls, 
which extend deeply in the fluid, was acknowledged but apparently misinterpreted as a mere 
“boundary layer” perturbation.  The expression (18) was recovered because the representation 
(9) was finally used.  
 
Note that in straight pore channels (E = e ) the second contribution in (17) vanishes while the 
first reduces to the pore surface-to-volume ratio pp VS / . In general, both contributions are of 

the same order of magnitude. As an example, they are both equal to pp VS /  for normal flow 

through an array of parallel solid cylinders in the dilute limit. 
 
Obviously, when the interface has everywhere bounded curvature the high-frequency 
development of permeability involves only integer powers of ε . It was suggested by Achdou &  
Avellaneda [1] that the presence of wedged-shaped intrusions would produce higher order 
terms as indicated in (2), with non integer powers of ε  related to the apex angle of the wedges. 
Using the representation (9) of the dynamic permeability we now give a simple argument to 
determine the relation between the apex angle γ  and the power of  the first higher order term.  
 

 
3. CORRUGATED PORE CHANNELS 
 
As argued by Achdou & Avellaneda a 2D reasoning is sufficient to study the singularity. The 2D 
periodic geometry considered is depicted in Fig. 1. The wedge is defined by its external angle 
α  or complementary apex angle απγ −= 2 . Introducing polar coordinates r , θ , we set the 



origin 0=r  on the tip of the wedge and count the angle θ  from one side of the wedge. The 
singular potential field ),( θrE  may be written (Landau & Lifshitz [10]) 

   )cos(1 θnnArE n
r

−= ,  )sin(1 θθ nnArE n−−= ,   (19) 
where n , 12/1 << n ,  is the ratio )2/(/ γππαπ −=  and A  is an amplitude factor.  
 
The contribution of the wedges to the integral (9) may be evaluated noting that the velocity field  

v~  matches the value E2ε , to leading order, on the bounding surface of the potential flow 
region. The separation between this surface and the tip of the wedge shrinks like the viscous 
skin depth δ  when frequency increases. Thus, owing to  (19), the external potential fields E  

and v~  must be considered to vary like 1−nε  and 1+nε , respectively, when integrating in the 
“non plane” boundary layer around the tip of a wedge. Simultaneously, the spatial extent of this 

modified boundary layer region around the tip shrinks like 2δ . It follows that the wedge 

contribution to (9) will be )()( 22112 nnn OO +−+ = εεεε , which yields the result  (2-3).  
 
Achdou & Avellaneda [1] used the representation (5),  while considering only the contribution 
from the boundary layer, probably due to the aforementioned misinterpretation in [2]. The latter 

contribution is )()( 312 nn OO ++ = εεε , and they obtain the relation 
γπ
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exponent nw 2=  in (2) and the apex angle γ . Using the representation (5) the perturbed bulk 
potential flow induced by the presence of wedges should also be taken into account and it 
happens that it is now a dominant contribution. 
 
 
4. NUMERICAL COMPUTATIONS 
 
Numerical computations of the fields v~   and E  were performed on the periodic geometry 
depicted in Fig.1, for different values of the wedge apex angle γ  and height h . The Stokes 

problem was solved using the variational formulation of the problem and a 1N  Finite-Element 
code based on a Uzawa decomposition method.  To ensure accuracy, we have used an 
iterative automatic method, i.e. the solution is computed on the 1N  mesh, next an a-posteriori 
estimate of the error is computed, and finally the mesh is locally refined accordingly by means 
of a Delaunay technique developed by Rebay [13]. Successful use of this refinement method on 
sharp-edges wedges was reported by Firdaouss et al. [7]. Once the flow field v~  is known, the 
dynamic permeability is computed using (5). Coherent calculations of the electric field E  and 
electrical parameters (7), (18), were obtained using either the Schwartz-Christoffel 
transformation technique - Cortis & Smeulders [5] - or the method [7].  
From (2) it follows that the real part of the dynamic permeability should verify, in a high 

frequency limit, [ ] 13/)( −+= w
wBAkRe δδω , where the constant A  is related to the formation 

factor φα /∞  and inverse length C , and the constant wB  is related to w , wC , and the 

formation factor. The values of A , wB , and w  can be estimated by comparison between the 

high-frequency numerical data for [ ] 3/)( δωkRe  and the above theoretical form. As an example, 
we show below the results obtained for the exponent w  when the wedge angle γ  varies 
between 0  and 2/π . The wedge height h  is set 0.5.  
In the singular limit  of  “knife-shaped” intrusions ( 0=γ ), the value 1=w  indicates the merging 
of the different terms. For flat surfaces πγ = , the value 2=w  will be obtained. The computed 
data is relatively close to the theory, the Achdou & Avellaneda prediction being plotted for 
comparison. As compared to the situation encountered in smooth pore channels, the effect of 
sharp wedges is to produce a much slower convergence of the high-frequency dynamic 
permeability to the Johnson et al. development (1).  In these situations, the development (2) 
enables representing in a very accurate manner the high-frequency permeability [6]. 
 



5. CONCLUSION 
 
Analyzing in detail the fluid velocity pattern established in non trivial geometry in the high-
frequency limit, we have provided a new derivation of the Johnson et al. [8] high-frequency 
development of the dynamic permeability and a new expression of the characteristic length Λ . 
Two different contributions to the dynamic permeability are now apparent. One comes from the 
boundary layer near the pore walls, another comes from a perturbed potential flow in the bulk, 
which is induced in non trivial geometry by the presence of the boundary layer. This 
understanding has been applied to derive the correct form of the leading higher order terms 
which are present in rugged geometry. Such terms are essential to obtain the correct high-
frequency behavior of the dynamic permeability when sharp edges are present.  
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   FIG. 1.  Geometry of the 2D rugged            2/tanγ  
     pore channel     FIG. 2.  Dependence of the exponent w on the 

     wedge apex angle γ .  
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