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ABSTRACT 
 

In order to characterize sound propagation in porous media, it is necessary to determine a 
set of intrinsic macroscopic acoustical parameters such as resistivity, porosity, tortuosity, 
characteristic length, and thermal permeability. From the knowledge of resistivity, porosity, and 
density of the material, and the measurement of the complex dynamic density and bulk 
modulus, the missing parameters are found using analytical solutions. In this paper attention is 
focused on materials having a very low stiffness, and which can be considered as “limp”. 
Experimental results obtained on materials of various resistivity and density are presented to 
show the reliability of this new method. 
 
 
 
INTRODUCTION 

 
As open-cell porous materials are utilized in many noise control applications, it is necessary 

to find their intrinsic properties regarding sound propagation. In a previous study, a 
characterization method for determining the tortuosity, characteristic lengths, and static thermal 
permeability of air-saturated porous media having a motionless frame was proposed [1,2]. It is 
based on the measurements of the dynamic density, bulk modulus, static airflow resistivity, and 
porosity of the material, and on analytical solutions derived from the Johnson et al’s and Lafarge 
et al’s models [3,4]. 

In this paper, the method is extended to limp materials, for which analytical solutions can 
also be found. Experimental results obtained on low density and low stiffness glass wools are 
presented. 
 
 
 
 



1. THEORY 
 
1.1. The Rigid And Limp Models 

 
Under the homogenization hypothesis (wavelength large compared to the heterogeneities of 

the medium), a perfectly rigid-frame, as well as a limp porous medium, can be represented as a 
homogeneous dissipative medium characterized by an equivalent dynamic density ( eqρ% ) and 
bulk modulus ( eqK% ). The tilde symbol denotes that these two functions are complex valued and 
frequency dependent. Then the macroscopic behavior of the material submitted to harmonic 
excitations ( j te ω ) is given on the one hand by the wave equation, and on the other hand by the 
generalized Darcy law: 
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where p and v
r

are the macroscopic acoustical pressure and velocity, ∆  and ∇
r

are respectively 
the Laplacian and gradient operators, and ω  the angular frequency. 

In the case of a rigid-frame (motionless skeleton) open-cell porous material, eqρ% is rewritten 

eq

fρ%  to recall that the effective density of the homogeneous material only depends on the fluid 
phase of the material. 

eq

fρ% can be evaluated using the semi-phenomenological model introduced 
by Johnson et al [3] that only depends on the properties of saturating fluid : η, the kinematic 
viscosity, and 0ρ the density ; and on macroscopic intrinsic geometrical parameters depending 
on the microstructure of the material : σ , the static air-flow resistivity, φ , the open porosity, 
α∞ , the tortuosity, and Λ the viscous characteristic length. Then according to the Johnson’s et 
al’s model the equivalent density can be written: 
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This description falls when the motion of the solid frame cannot be neglected anymore. 
Generalized poro-elastic models such as the Biot-Allard’s models are then required to describe 
the behavior of the medium [5,6].  However, a simplified description can be obtained for limp 
materials, i.e. when the solid frame has no bulk stiffness [7]. Then the equivalent density of the 
homogeneous medium rewrites: 
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where the constants A , B and C are:  ̈

matA ρ=   2
0B ρ= −   02matC ρ ρ= −  

and matρ  is the apparent density of the porous medium, 0(1 )mat sρ φ ρ φρ= − +  where sρ is the 
density of the solid part constituting the skeleton. 
 
1.2. Analytical Inversion  
 

In this part, the analytical expressions of α∞ and Λ , derived from equations (3) and (4) are 
given, assuming the prior knowledge of eqρ% , σ and φ  for the rigid frame model, and adding 

matρ for the limp model. For the sake of simplicity eqρ% rewrites: 

 eq X jYρ = +% %%  (5) 

1.2.1. Rigid model 
 

Identifying real and imaginary parts of equation (3), and solving a second order equation 
leads to find on the one hand, the tortuosity: 
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and on the other hand, the viscous characteristic length : 
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Note that in the last equation Λ depends on α∞ , and must be calculated afterwards. 
Theoretically, α∞ and Λ don’t depend on frequency, and the first step is to check this 
hypothesis when using these equations. Hence, two major reasons can explain an apparent 
frequency dependency of the parameters. The first one is linked to the fact that the Johnson’s 
model fails to predict reality at low frequencies, i.e. below 0( / )cvω σφ ρα∞= the viscous 
characteristic frequency of material. Then the method should be used in the middle frequency 
range according to this estimation. The second reason is related to a possible motion of the 
frame. In this case the limp inversion can be used for materials with very low stiffness, in a 
frequency domain where the stress in the skeleton can be neglected. 
 
1.2.2. Limp model 

 
Due to the form of equation (4), finding the parameters leads to slightly more complex 

expressions. Identifying again real and imaginary parts in equation (4) shows that the tortuosity 
is the solution of the following second order equation: 
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Numerical simulations show that the admissible root is given by : 2 1 / 2( ( 4 ) / 2b b ac aα∞ = − − −  

The viscous characteristic length is given by: 
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2. EXPERIMENTAL RESULTS 

 
The reliability of the method has been tested on two low density glass wools having a very 

low stiffness. They have also been chosen for their relative high static flow resistivity in order to 
obtain limp behaviors. The very special properties of these two “cotton-like” materials, are due 
to the fact that the frame is made of very thin fibers, not usual regarding glass wools. As many 
mineral wools, they are anisotropic with a transverse isotropy. All the results presented in this 
part was obtained in the direction normal to the fiber planes. Firstly, σ and φ  have been 
directly measured using classical techniques as described in [8]. The density of both materials 
have also been determined, and all these parameters being reported in Table 1. The equivalent 
densities eqρ%  was obtained using a Kundt tube based method [9]. This technique allows  



determining the characteristic impedance (
1 / 2( )c eq eqZ Kρ= %% ), and the wave number 

(
1 / 2( / )c eq e qk Kω ρ= %% ) from impedance measurements, and then to deduce eqρ% and eqK% . 

The tortuosity and viscous length has been determined in a sufficiently high frequency 
range (between [2500,3800] Hz for mat. 1, and  [2800,4000] Hz for mat. 2), to avoid problems 
linked to the limitations of the Johnson et al’s model, or elastic behaviors of the materials. It 
appears that the identification of the parameters cannot be performed using the analytical 
solutions of the rigid model, but only using those of  the limp model. 

 

 σ (Nm -4s) φ  α∞  Λ  (µm) 'Λ  (µm) 
'
0k  

(10-10 m²) 
matρ  

(kgm -3) 

Mat.1 38200 
( ± 301) 

0.995 
( ± 0.003) 

1.00 
( ± 0.03) 

33 
( ± 2) 

105 
( ± 4) 

57.5 
( ± 8.1) 

8.5 
( ± 0.1) 

Mat. 2 
151180 

( ± 2095) 
0.991 

( ± 0.004) 
1.03 

( ± 0.15) 
11 

( ± 2) 
42 

( ± 3) 
20 

( ± 7.7) 
15.1 

( ± 0.15) 
Table 1 : Parameters of Mat. 1 and 2, obtained from direct (σ , φ , and 

mat
ρ ) measurements, and using 

analytical solutions of the limp model (with Johnson et al’s model) (α∞ , Λ ), and the Lafarge et al’s model ( 'Λ , 
'

0
k ). The italic numbers are the standard deviations obtained with each techniques. 

  

In order to predict the absorption coefficient and surface impedance, the thermal 

parameters ( 'Λ , the thermal characteristic length, and '
0k  the thermal permeability) used in the 

Lafarge et al’s model [4], have also been determined with a very similar analytical inversion 

technique [1,2]. 
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Figure 1 : Comparison between normalized equivalent densities (a), absorption coefficients (b) and normalized 
impedances (c) (rigid backing) , given by the rigid ( ) and limp models ( ), and measured ( ), for 
Mat.1.The thickness of the material is d=15.8 mm. 0Z is the specific impedance of air. 
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Figure 2 : Comparison between absorption coefficients (rigid backing) given by the limp model ( ), the Biot-
Allard model ( ), and measured ( ), for Mat.1. The thickness of the material is d=15.8 mm. The elastic 
parameters of the Biot-Allard’s model have been manually  set to : E (Young’s modulus)=7 kPa, ν (Poisson’s 
ratio) =0, and µ (loss factor)=0.05. 
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Figure 3 : Comparison between normalized equivalent densities (a), absorption coefficients (b) and normalized 
impedances (c) (rigid backing) , given by the rigid ( ) and limp models ( ), and measured ( ), for Mat.2. 
The thickness of the material is d=7.7 mm. 

 



It appears that, for both materials, the analytical solutions using the limp model  allows the 
identification of the equivalent density with a very good precision above 1000 Hz (Figures 1 and 
3). The agreement with the absorption coefficient and surface impedance is also excellent. The 
experimental results have also been compared to the rigid model, using the same acoustical 
parameters. It clearly shows that the rigid approximation cannot be used for these materials in 
the frequency range of measurement. Some discrepancies appear at lower frequencies with the 
limp model. These are probably due to an elastic (and not only inertial) behavior of the frame. 
Figure 2 shows that a better prediction of the measured absorption coefficient can be obtained 
using the Biot-Allard‘s model (for semi-infinite materials) [6]. 
 
 
 
3. CONCLUSION 

 
The proposed characterization method shows that it is possible to take into account the limp 

behavior of low stiffness porous materials, for determining their intrinsic acoustical parameters. 
This middle-frequency method only requires classical Kundt tube measurements, and the prior 
knowledge of the static air-flow resistivity, porosity, and apparent density. One interest of the 
method is the possibility to check the validity of the basic hypothesis (limp, rigid frame) 
inspecting the “frequency dependency” of the parameters. Comparison between experimental 
results, obtained on two glass wools, and the limp model, using the so determined parameters, 
confirm the applicability of the method. 
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