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ABSTRACT 
This paper provides an experimental validation of the Pride-Lafarge [6,7] model of the acoustic 
wave propagation in porous material having a rigid frame. An experimental validation have been 
done for three plastics foams having different flow resistivity. A comparison between  experimental 
and simulated attenuation data is given. 
 
 
 
I.  INTRODUCTION 
In the acoustics of porous materials, one distinguishes two situations according to whether the 
frame is moving or not. In the first case, the dynamics of the waves due to the coupling between 
the solid skeleton and the fluid is well described by the Biot [1,2]  theory. In air-saturated porous 
media the structure is generally motionless and the waves propagates only in the fluid. This case 
is described by the model of an equivalent fluid in which the interactions between the fluid and the 
structure are taken into account in two frequency dependent response factors: the dynamic 
tortuosity of the medium )(ωα  given by Johnson [3] and the dynamic compressibility of the air 

included in the porous material )(ωβ  given by Allard [4]. 

Let us consider a homogeneous isotropic porous material with porosity φ  saturated with a 

compressible and viscous fluid of density fρ and viscosity η. It is assumed that the frame of this 

porous solid is not deformable when it is subjected to an acoustic wave. It is the case for example 
for a porous medium which has a large skeleton density or very large elastic modulus or weak 
fluid-structure couplings. To apply the results of linear elasticity it is required that the wavelength 
of sound waves should be much larger than the sizes of pores or grains in the medium. In these 
porous materials acoustic waves propagates only in the fluid. They can be seen as an equivalent 
fluid, the density and the bulk modulus of which are “renormalized” by the fluid–structure 
interactions.  
The basic equations of this model are the Euler equation and the law of the mass conservation 
associated with the behavior equation:    
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In these relations, v and p are the particle velocity and the acoustic pressure, fρ  and 0PKa γ=  

are respectively the density and the compressibility modulus of the fluid,  )(ωα  and )(ωβ  are 

the dynamic tortuosity of the medium and the dynamic compressibility of the air included in the 

porous material. These two response factors are complex functions which heavily depend on the 

frequency πω 2/=f  

 

 

 

II. MODELS 

A model initially developed by Johnson et al [3], and completed by Allard et al [4] and Lafarge et al 

[5] by adding the description of thermal effects gives the theoretical expressions of the dynamic 

tortuosity )(ωα  and the dynamic compressibility )(ωβ : 
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Where j2=-1, 
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constant, rP  the Prandtl number, ∞α  the tortuosity, 0k  the static permeability, 0'k  the thermal 

permeability, Λ  and 'Λ  the viscous and thermal characteristics lengths [3,4]. The functions 

)(ωα  and )(ωβ  express the viscous and thermal exchanges between the air and the structure 

which are responsible of the sound damping in acoustic materials. These exchanges are due on 

the one hand to the fluid–structure relative motion and on the other hand to the air compressions-

dilatations produced by the wave motion. The parts of the fluid affected by these exchanges can 

be estimated by the ratio of a microscopic characteristic length of the media, as for example the 

sizes of the pores, to the viscous and thermal skin depth thickness 2/1
0 )/2( ωρηδ =  and  

2/1
0 )/2(' rPωρηδ = . For the viscous effects this domain corresponds to the region of the fluid in 

which the velocity distribution is perturbed by the frictional forces at the interface between the 

viscous fluid and the motionless structure. For the thermal effects, it is the fluid volume affected by 

the heat exchanges between the two phases of the porous medium. In this model the sound 

propagation is completely determined by the six following parameters: 

Λ=∞ ,',/,, 00 kkησαφ and  'Λ . The range of frequencies such that viscous skin thickness 

)/2( 0ωρηδ =  is much larger than the radius of the pores r  1>>
r

δ
, is called the low 



frequency range. For these frequencies, the viscous forces are important everywhere in the fluid. 

At the same time, the compression-dilatation cycle in the porous material is slow enough to favor 

the thermal exchanges between fluid and structure. The temperature of the frame is then 

practically unchanged by the passage of the sound wave because of the high value of its specific 

heat: the frame acts as a thermostat, and in this case the isothermal compressibility is directly 

applicable. 

The low frequency approximation of the response factors )(ωα  and )(ωβ  are given by tacking 

the limit 0→ω in Eq. (2) which leads to the following expressions: 
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In this domain of frequency the Euler equation is reduced to the Darcy’s law which defines the 

static flow resistivity 
0k

ησ = . 

When the frequency increases, the skin thickness becomes narrower and the viscous effects  are 

concentrated in a small volume near the frame δ/r << 1. in this case the viscous effects in the fluid 

can be neglected: the fluid behaves almost like a perfect fluid (without viscosity). In this domain of 

frequencies the compression/dilatation cycle is much faster than the heat transfer between the air 

and the structure and in this case, it is a good approximation  to consider that the compression is 

adiabatic. 

The high frequency approximation of the responses factors )(ωα  and )(ωβ  when ∞→ω  are 

given by the relations: 
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Pride et al [6] and Lafarge et al [7] Model 

Later on Pride et al [6] and Lafarge et al [7] give a correction of the previous model by adding the 

real part 0α  of the dynamic tortuosity at the low frequency limit, when: 0→ω , 

0
0

)( α
ωρ
ηφ

ωα +≈
kj f

, and by adding  two others parameters p and 'p  in  the development at 

high frequency limit for the dynamic tortuosity and the dynamic compressibility,  when ∞→ω , 

the expression of )(ωα  and )(ωβ  becomes 
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with:
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p , 0'α  is the thermal equivalent of 0α . 

The general expression of the dynamic tortuosity and the dynamic compressibility in this new 

model is given by: 
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This model verify the condition of causality if the singularities in the complexω  plane are located 

in the lower half plane (Im(ω) < 0) and verify the condition of long wavelength, which is specific to 

this problem if the singularities are in the imaginary axis [7], theses conditions restricts the values 

of p to : 
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The expression of the attenuation )(ωε  which is the imaginary part of the wave number: 
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In the case of Johnson [3] and Allard [4] model the attenuation is given by 
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3. ULTRASONIC MEASUREMENTS 

As an application to this theory, some numerical simulations are compared to experimental 

results. Experiments are performed in air with two broadband Panametrics V386 piezoelectric 

transducers having a 150 kHz central frequency in air and a bandwith at 6 dB extending from 60 to 



350 kHz. Pulses of 300 V are provided by a 5058PR Panametric pulser/receiver. Received signals 

are amplified up to 90 dB and filtered above 1MHz to avoid high frequency noise. 

Fig.1, 2 and 3. shows a comparison between experimental and simulated data of the attenuation 

for different plastic foams M1, M2 and M3 (table. 1). The blue curve corresponds to the 

experimental data of the attenuation. The red dashed line curve corresponds to the simulated 

signal using Johnson-Allard model (Eq. 9) and the black dashed line curve corresponds to the 

simulated signal using Pride-Lafarge model (Eq. 8). 

The values of p and 'p  used for the simulation are given in table. 1. These values are not well 

inverted because of the complexity of the inverse problem, the values of 'p  have been taken equal 

to those of p  which is not verified in the general case. The sensitivity of 'p  is less important for 

the attenuation compared to the sensitivity of p , this is due to the viscous effects which are 

prevailing in the attenuation of the sound wave. The main difference between the black dashed line 

curve of the attenuation (Pride-Lafarge) model and the red dashed line curve (Johnson-Allard) 

model is situated in the gap at the vertical axis of the attenuation due to the added term of Pride-

Lafarge model. This term is shown to be important to a best fit of the attenuation experimental 

curve.     

  

 

Materials ∞α  )( mµΛ  )(' mµΛ  )( 4sNm−σ  φ  p  'p  

M1 1.05 300 900 2500 0.98 0.8 0.8 

M2 1.25 50 150 38000 0.92 1.1 1.1 

M3 1.5 30 90 125000 0.82 1.3 1.3 

    Table.1. Parameters of the plastics foams. 

 

 

 
Fig. 1.     Fig. 2. 



 

Fig. 3.  

 

 

CONCLUSION 

An experimental validation of the Pride-Lafarge model for the acoustic propagation in porous 

materials having a rigid frame is given. This model gives a better description of the propagation at 

high and low frequency range in the continuity of Johnson-Allard model. The values of the 

parameters p and 'p  used for the simulation are not well inverted. This is because of the 

complexity of the inverse problem due to the large number of the parameters. It is however shown 

the necessity of using the Pride-Lafarge model for a better description of the propagation. 

 

 

 

REFERENCES 

[1] M. A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid.I.Low-

frequency range”, J. Acoust. Soc. Am, 28, 1956. 

[2] M. A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid.II. High 

frequency range”, J. Acoust. Soc. Am, 28, 1956. 

[3] D. L. Johnson, J. Koplik and R. Dashen, “Theory of dynamic permeability and tortuosity in  

fluid-saturated porous media”, J. Fluid. Mech. 176, 1987. 

[4] J.F. Allard and Y. Champoux, “New empirical equations for sound propagation in rigid frame 

fibrous materials”, J. Acoust. Soc. Am, 91, 1992. 

[5] D. Lafarge, P. Lemarnier, J. F. Allard and V. Tarnow, “Dynamic compressibility of air porous 

structures at audible frequency”, J. Acoust. Soc. Am, 102, 1995. 

[6]  S. R. Pride, F. D. Morgan and A. F. Gangi, “Drag forces of porous media acoustics”, Phys. 

Rev. B, 48, 1993.    

[7] D. Lafarge, “Propagation du son dans les matériaux poreux à structure rigide saturés par un 

fluide viscothermique”, Ph.D. dissertation, Université du Maine, 1993. 


