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ABSTRACT 
 
Automatic recognition of instrument type from raw audio data containing monophonic music is a 
fundamental problem for audio content analysis. There are many methods for the solution of 
this problem, which use common spectro-temporal properties like cepstral coefficients or 
spectral envelopes. A new method for instrument recognition utilising short-time amplitude 
envelopes of wavelet coefficients as feature vectors is presented. The classification engine is a 
distinctively small multilayer perceptron (MLP) network. A correct classification rate which is 
comparable to previously reported correct classification rates is attained for a set of three 
instruments containing flute, clarinet and trumpet. 
 
 
INTRODUCTION 
 
Timbre was shown to be a multidimensional property of sound [1] describable by both temporal 
and spectral characteristics. It was shown that the spectral envelopes [2], the cepstral 
coefficients [3], the spectro-temporal statistics [4], the sub-band energies [5] of the sound signal 
can be used for instrument recognition and the wavelet coefficients can be used for audio 
indexing and retrieval [6][7].  
 
Audio content analysis and automatic recognition of musical instruments are frequently carried 
out using the statistical classification of the special features extracted from a sound signal. The 
statistical analyses of the feature sets derived from these features reveal information on the 
type of the instrument being played. Most of the previous research on instrument recognition 
focuses on sterile conditions where, computer synthesized sounds rather than sounds from 
real-life conditions are employed. This selection of data provides a clean set of features for the 
instruments to be classified. However, this approach is not usually robust enough to classify real 
sounds.  
 
The feature vectors used in this paper employ the short-time amplitude envelopes of the 
wavelet coefficients rather than the raw wavelet coefficients or the sub-band energies. Since the 
discrete wavelet transform (DWT) is a shift variant transform, the wavelet transform of the 
delayed version of the same sound would give different coefficients. Hence using the raw 
wavelet coefficients is not desirable. Using the sub-band energy ratios seems to result in an 
acceptable recognition rate, but loses the temporal dimension of timbre which is essential.  
 



In this work, the three instruments chosen for classification are the E-flat clarinet, the flute and 
the C trumpet. The reason for such a selection is that, the trumpet and the flute were shown to 
be undistinguishable by family with statistical analysis (i.e. multidimensional scaling), and the 
clarinet and the flute are in the same family of instruments (i.e. woodwinds) which are inherently 
hard to recognize as individual instruments. 
 
Formation of the wavelet envelopes and their relation to the musical instrument sounds will be 
discussed in the first section.  The properties of the multi-layer perceptron (MLP) neural network 
used in instrument classification will be discussed next. Results of a classification task for the 
three instruments will be provided. 
 
 
WAVELET ENVELOPES AS AUDIO FEATURES 
 
Discrete wavelet transform (DWT) uses a filterbank structure to obtain a half-band low-pass 
version and a half-band high-pass version of the signal. The filterbank contains well-defined  
low-pass and high-pass filters and a subsampling operation after each filter. The low pass 
version is used as the input to a similar filterbank to get a ¼-band low-pass version, ¼-band 
high-pass version and a half-band high-pass version. The process is iterated N times to get a N-
level DWT. The frequency resolution increases for each iteration while the time resolution 
decreases [8]. Although application of the wavelet transforms was investigated in detail for 
many signal-processing applications, research on instrument recognition with wavelets is 
limited. 
 
The feature vectors used in this research consisted of the wavelet envelopes. which were 
formed using the ratio of the RMS amplitude envelopes of the wavelet coefficients of the leaf 
nodes of a dyadic wavelet tree to the RMS amplitude of the original signal. 
  

22
, )()( ∑∑= nsncF

jn
iji  

 
where ci(n) is the wavelet coefficients of node i and s(n) is the signal to be analysed and Fi,j is 
the ith element of the feature vector representing the jth frame of discrete wavelet transform. 
Frame length is chosen as 1024 samples, which corresponds to 46.4 ms. The wavelet used in 
the derivation of the feature set is the Symmlet-17 wavelet. As the different instruments have 
different amplitude envelopes, it was necessary to normalise signals for a proper DWT 
decomposition.  
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Fig. 1 (a) 3D and (b) 2D, representations of the wavelet envelope for flute playing G4. 
 



Properties of the subjective qualities of these sounds can also be observed from the feature 
sets (see Fig. 2). Flute sound shows more frequency modulation and the frequency content is 
spread through frequency bins. Trumpet sound has higher frequency content in the attack 
portion, but has less frequency modulation than flute. Clarinet sound has steady characteristics 
and signal energy is probably concentrated in the fist few harmonics of sound. Other than these, 
similarity of signal amplitude envelope and wavelet envelopes can be examined from the 3D 
representations of the feature vector sets. 
 

 
 
Fig. 2 The waveforms and wavelet envelopes in 3D and 2D representation of (a) flute, (b) C 

trumpet, and (c) E-flat Clarinet (all playing the note A4). 
 
 
MLP NEURAL NETWORK CLASSIFIER 
 
The MLP used in the automatic instrument recognition task contains one hidden layer, with 8 
neurons and an output layer with 3 neurons (see Fig. 3). Feature vectors for recognition are 
formed using 8 element vectors derived from the wavelet envelopes of audio signals 
columnwise. 
 
 
 
 
 
 
 
 
 
Fig. 3 Structure of the MLP used for instrument recognition. IW, LW and b are input weight, 

layer weight and bias respectively. 
 
The MLP has 88 connections, which is significantly low compared to the other neural network 
structures previously proposed for similar purposes. Through extensive simulations, the 
activation function for neurons in the hidden layer was selected to be tangent sigmoid and 
saturating linear activation function was selected for the output layer.  
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Fig. 4  Relative playing ranges of the instruments. 
 
The MLP was trained with Levenberg-Marquardt (LM) method of backpropagation [9] with a 
training data set consisting of feature vectors extracted from isolated instrument sounds. These 
sounds contained full playing ranges of the flute, the C trumpet and the E-flat clarinet. The 
training data set was obtained from the McGill MUMS CD Vol.1 [10]. The flute data set 
contained all sounds from C4 to C7. The clarinet and trumpet data sets contained all sounds 
from G3 to D6. This selection of instruments gave an overlapping range of notes. (See Fig. 4). 
All acoustical artefacts related to recording were assumed to be eliminated beforehand as these 
sample sounds were recorded in a recording studio. This provided a reliable data set for training 
the MLP. Table 1 contains the statistical properties of training set. 
 

Instrument Number of Sounds mean length (s) STD of length (s) 

Flute 37 (C4-C7) 4.24 0.46 

Trumpet 32 (G3-D6) 6.70 1.22 

Clarinet 32 (G3-D6) 4.59 0.80 

 
Table 1 Statistical properties of the sounds in the training set. 
 
Since the training set was highly redundant, training was made using the sequential mode 
rather than the batch mode. Targets were determined in such a way that only one output should 
be ‘1’ at a time. The goal for mean square error was set to 0.02 to prevent the neural network 
from overfitting the training set. The MLP attained the goal in 53 epochs. This number is quite 
low when compared to number of epochs needed to train a similar network using gradient 
descent methods. Training with gradient-descent methods requires number of epochs in the 
order of thousands for generalization. 
 
 
RESULTS AND DISCUSSIONS 
 
Special attention was given to selection of different types of recordings of each instrument while 
choosing the test data set. Test set contained recordings of professional and amateur players, 
highly improvised jazz pieces and synthesised sounds of instruments, sounds with much 
background noise and professional recordings. This selection is believed to make the results 
more reliable and more suitable for real-life conditions. 
 
Each feature vector represents only a 46.4 ms long portion of a sound. Therefore, a long sound 
is represented by a large number of feature vectors while a short sound is represented by a 
small number of feature vectors. Table 2 gives details about the durations of the sounds used in 
the test phase for the MLP neural network.  



 

Instrument Number of Sounds Average Length (s) STD of Length(s) 

Flute 19 6.63 5.49 

Trumpet 18 11.79 10.63 

Clarinet 10 7.38 6.45 

 
Table 2 Statistical properties of sounds in the test set. 
 
It was observed that the MLP performs quite robustly for highly improvised sound signals (i.e. in 
jazz recordings) and non-standard playing techniques (i.e. in amateur performances), which 
were not included in the training phase. The MLP misclassified 31.8% of flute sounds, 11.1% of 
trumpet sounds, and 20.0% of clarinet sounds. The overall correct classification rate is 78.72% 
for recognition of one in three instruments. 
 
 
CONCLUSIONS AND FUTURE WORK 
 
A new set of audio features for monophonic instrument recognition was proposed in this paper. 
The correct classification rates achieved by a simple MLP are promising. The simplicity of the 
proposed system makes it viable for real-time applications. 
 
Reduction of the effect of temporal properties in classification of the instruments is the 
disadvantage of using an MLP network as a classifier. Temporal properties of the feature set 
may be exploited much better using time-dependent neural networks such as hidden Markov 
models (HMMs) or time-delay neural networks (TDNNs). Shift-invariant wavelet basis [11] or 
matching pursuit [12] may also be suitable for extracting spectro-temporal information from 
sound data. 
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