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ABSTRACT 
 
When blowing a wind instrument, the sound level is limited by the fact that when the blowing pressure 
increases the level also increases until a maximum beyond which the reed closes suddenly. Time 
domain simulations and experiments using an artificial blowing machine are used to demonstrate that 
losses are responsible for this phenomenon. Due to losses the pressure in the mouthpiece becomes 
too low to ensure the reopening of the reed. It is shown that, in the case of conical instruments, the 
same mechanism is responsible for the bifurcation to unusual modes such as the inverted Helmholtz 
motion.  
 
 
 
INTRODUCTION 
 
When a beginner starts studying the clarinet, he needs to learn to control is breath so that the 
pressure is sufficient to maintain an oscillations but not to high which leads to the closing of the reed 
channel. In other words the player may deliver a pressure in between the threshold of oscillation and 
the saturation threshold. To our knowledge  this saturation threshold have not been studied. Moreover, 
lossless models do not emphasise such a threshold. Introducing losses may explain the phenomenon 
but experiments show that the saturation threshold is much lower than expected with a model with 
standard losses parameters. In the case of conical woodwinds, the saturation threshold for the 
fundamental standard regime also exists but does not lead directly to the closing of the reed. The 
oscillation bifurcates to another regime in principle unstable when the standard regime is stable. This 
regime can be either the octave of the standard regime or a regime at the same frequency such as the 
inverted Helmholtz motion.  
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1. CYLINDRICAL CASE (CLARINET) 
 
 
1.1 Lossless model 
 
A lossless model in which losses and reed inertia are neglected and in which the clarinet is considered 
as a perfect cylinder have been exhaustively studied by Maganza and others [1-3]. In this model the 
reed is closed when the pressure drop between the mouth and the mouthpiece is larger than a 
pressure PM characteristic of the embouchure. Up to the beating threshold, the standard regime 
alternates two states. For the first state, the reed is open and the pressure in the mouthpiece P is 
equal to the pressure Pm in the mouth. The pressure drop between the mouth and the mouthpiece 
∆p=Pm-P is equal to zero. For the second state, the reed is closed P=-Pm and the pressure drop is 
∆p=Pm-P =2Pm (see figure 1). This regime of oscillation is called “Helmholtz motion” because of the 
analogy with the bowed string [3, 4]. Nothing in the model points out a saturation threshold which is 
rejected to infinity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 : Pressure drop and reed opening signals as a function of time in the case of lossless model. 
 
1.2. Model with losses  
 
Losses can be easily introduced in the model [5].  In our simulation standard visco-thermal losses are 
not sufficient to produce a saturation at a realistic pressure. Therefore the reflection coefficient at the 
open end of the tube has been decreased to R=0.98. This shall not be considered as shocking, as it 
has been demonstrated [6, 7] that the non-linear phenomena at the end of a tube may increase losses 
considerably. The difference with the lossless model lies in the fact that the pressure signal is not a 
square signal. It appears that when mouthpressure increases beyond the pressure PM, the pressure 
drop is lower than PM for a time lower than a half period (see figure 2). Consequently the reed opens 
for a decreasing duration when the mouthpressure increases. When this duration becomes too small 
the oscillation stop suddenly. We notice a small out of phasing between the opening episode and the 
time during which the pressure drop is lower than PM. This, as well as the fact that the reed opening 
can be larger than its rest position, is due to the taking into account of the reed inertia.  
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Figure 2 : Pressure drop and reed opening signals as a function of time near the saturation 
(simulation including losses and reed inertia). 

 
1.3 Experiment 
 
Experiments have been carried out with a blowing machine [8]. The pressure drop have been 
measured with a high sensitivity pressure transducer (ENTRAN EPE-541-M). The reed opening have 
been  
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Figure 3 : Pressure drop and reed opening signals as a function of time near the saturation 
(experiment). 

measured with a LASER and a photo diode [9]. It appears that when the mouthpressure increases the 
pressure drop when the reed is open increases. When this pressure drop is larger than PM, the reed 
do not reopen and the oscillations stop. The behaviour is similar to what is obtained with the model 
with losses but the saturation appear more suddenly and for a mouthpressure lower than in our 
simulation (see figure 3). The explanation is probably due to the fact that, due to the non linear losses 
[7], the reflection coefficient at the end of the tube is probably much lower than 0.98. 
 
2. CONICAL CASE (SAXOPHONE) 
 
2.1 Lossless model 
 
We consider a model without losses in which the resonator is a succession of N cylinder of same 
length and such that Si=i(i+1)S1/2 where Si is the cross section of the ith cylinder. Such resonator are 
known to behave like a saxophone [3, 4, 10]. With such a model, as for the clarinet, up to the beating 
threshold, the standard regime alternates two states. First state, the reed is open and the pressure in 
the mouthpiece P is equal to the pressure Pm in the mouth. The pressure drop ∆p=Pm-P is equal to 
zero. Second state, the reed is closed P=-NPm and the pressure drop is Dp=Pm-P =(N+1)Pm (see 
figure 4 for N=2). This regime of oscillation is called “Standard Helmholtz motion” because of the 
analogy with the bowed string and because another solution, the “Inverted Helmholtz motion”, may 
also exists [3, 4]. For the standard Helmholtz motion the reed is open the main part of the period i.e. 
N/(N+1) times the period (see figure 4 for N=2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 : Pressure drop and reed opening signals as a function of time in the case of a lossless model 

for a resonator made with two cylinders (N=2). 
 
 
2.2. Model with losses  
 
When losses are introduced, the same phenomenon as with the clarinet appears. The opening 
duration which should be 2/3 of the period for a “standard Helmholtz motion” for N=2 diminishes when 
the mouthpressure increases until it reachs 1/3 of the period. Then, the oscillations bifurcate to a 
“three step motion” (see figure 5). For this regime the duration of the opening is a third of the period 
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and the pressure drop takes ideally three values 0, PM, 2PM. When the mouthpressure keep increasing 
the opening duration keep diminishing until the oscillation vanishes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 : Bifurcation from the standard Helmholtz motion to a “three step motion” 
 (simulation including losses and reed inertia for a resonator made with two cylinders (N=2))  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



Figure 6 : Extinction of the oscillation (experiment with a resonator made with two cylinders (N=2))  
 
2.3 Experiment 
 
Experiments have been carried out with a saxophone made with two cylinders. Experiments show that 
when the opening time diminishes the shape of the pressure signal is modified and tends to a signal 
which can be more or less interpreted as an “inverted Helmholtz motion” (figure 6). As observed with 
the simulation, when the measured mouthpressure keep increasing the opening duration keep 
diminishing until the oscillation vanishes (figure 6). 
 
 
CONCLUSION 
 
The mechanism which leads to the saturation is due the finite value of the pressure drop between the 
mouth and the mouthpiece when the reed is open. When this pressure drop reachs the closing 
pressure PM, the mouthpiece pressure is no more sufficient to ensure the reopening of the reed and  
the oscillation stops. Simulations shows that this phenomenon can be observed only if important 
losses, such as non linear losses on a side hole, are taken into account in the model. The saturation 
mechanism is also the cause of the bifurcation to non standard regimes such as the “inverted 
Helmholtz motion” 
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