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ABSTRACT The variable truncation method has been used first for cylindrical reed instruments. 
Thanks to the separation of odd and even harmonics, it is possible to justify it rigorously by 
comparing it to the exact solution obtained when losses are ignored : the Helmholtz motion. A 
generalization to a particular case of conical instruments, equivalent to  stringed instruments  
bowed at the third of the string length, is treated. The harmonics are separated into three 
classes ; the first step of the variable truncation considers only two harmonics, and leads to 
interesting results concerning the different thresholds and the spectrum for large oscillations. 
 
 
INTRODUCTION 
The harmonic balance technique is used since about 20 years for the computation of the 
spectrum, during the steady-state regime, of self-sustained oscillations of musical instruments. 
Recently, an approximate version of the method, called the variable truncation method (VTM),  
has been used in order to obtain simple formulae for clarinet-like instruments [1,2,3]. The 
justification of the VTM was based on the comparison with the solution for lossless resonators, 
i.e. square signals corresponding to the case of the well known Helmholtz motion, and it was 
proved that the method was an extension of the “small oscillations” method, valid only near the 
oscillations thresholds [4]. The present paper examines a generalization of the VTM, for the 
case of very simplified conical reed instruments. A particular interest lies in the existence of 
inverse bifurcations from the static, non oscillating regime : for this case the “small oscillations” 
method is of less interest because certain stable oscillating regimes are far from the threshold of 
instability of the static regime. 
The VTM can be a priori used for any shapes of resonators, but the paper is  limited to 
resonators for which the lossless limit is a Helmholtz motion, in order to know a limit solution, 
and thus the validity of the results. It is the reason why we start with a resonator equivalent to a 
cylindrical tube excited by a reed at the third of its length, further works being possible for other 
ratios, like 1/4, 1/5,etc... In recent papers, these kinds of resonators have been proved to be 
equivalent to “stepped cones”, conical resonators being a limit case of this class of shapes [3]. 
Therefore the present study can be regarded as a first step to the study of saxophones. 
The paper  presents first the model of the resonator and the excitation system, and the 
Helmholtz motion solution. Then approximate solutions are obtained when losses are present 
and  the different oscillating regimes (standard, octave, and inverse Helmholtz motion) are 
discussed, especially  oscillation thresholds and spectra. Further works are finally presented. 
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Figure 1 : a stepped cone and its equivalent (the arrows indicate  the location of the 
mouthpiece) ;  standard and inverse Helmholtz motion. 
 
 
THE MODEL; HELMHOLTZ MOTION FOR A LOSSLESS RESONATOR (see ref. [3]) 
 
For the reed and mouthpiece, the classical model based on the Bernoulli equation (with some 
assumptions) and the description of the reed as a simple spring leads to the following equation 
relating acoustic volume velocity u(t) and pressure p(t) at the entrance of the resonator [3] : 
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The values of the  coefficients are the following : 
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 where γ  is the (excitation) pressure in the mouth, assumed to be constant, and ζ is the 
“embouchure” parameter, characterizing the reed and the reed aperture. These two parameters 
and the two acoustic quantities are dimensionless. The coefficients are time-independent, and 
only the coefficient A varies significantly with the mouth pressure γ in the range of practical 
interest : the reed being assumed not to beat, γ is limited to 0.5. Thus B and C are negative and 
almost constant, and A changes of sign for 3/1=γ , i.e. the oscillation threshold for a lossless 
cylindrical (clarinet-like) resonator. A is opposite to a resistance : if it is positive, the resistance is 
negative, and  oscillation is possible.  
Considering now the resonator, the mouthpiece excites a cylindrical tube at the third of its 
length. If no losses are taken into account, a pure Helmholtz motion is obtained. The 
fundamental regime has its frequency as l2/1 cf =  , where l is the length of the resonator, and c 
is the speed of  sound. Two episodes of the period T need to be distinguished : the shorter, of 
duration 3/1 TT = , with a pressure value of 1p , and the longer, of duration 3/22 TT =  , with a 

pressure value of 2p . If 2p  is positive, the motion is called “standard Helmholtz”, if it is 
negative, the motion is called “inverse Helmholtz” (see figure 1). 
When no losses are taken into account, the impedance is zero for the frequencies 13mf , where 
m is an integer, and the corresponding component of the pressure vanish. It can be also proved 
that the volume velocity needs to be constant and if the impedance at zero frequency is zero, 
the mean pressure is also zero, thus : 
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From equations (1), (2) and (3) the following values are deduced for the pressure : 
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where 2/BAC−=α . The zero value corresponds to the static regime, and the non zero values to 

the oscillating regimes. 0=α  can be proved to be the threshold of instability of the static regime. 
For the further analysis, it is useful to expand the formula (4) for small values of α  : 
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Figure 2 shows the two oscillating solutions with respect to α , i.e. the mouth pressure. 
 
 
 
 
 
 



  

 
Figure 2 : solutions with respect to the 

mouth pressure    (equation 4) 
 
 
 
 
 
DECOMPOSITION OF THE SIGNAL 
In order to simplify the analysis when losses are present, it is possible to decompose the 
spectrum of the signal into three kinds of harmonics, the number of which being equal to n=3q, 
n=3q+1, n=3q-1, respectively where q is an integer, as follows : 
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where, for a square signal, 0)( =tps . Because the acoustic pressure signal is real, the last term 
is the complex conjugate of the second one. For a square signal corresponding to a direct 
Helmholtz motion, if the first harmonic is chosen to have a zero phase,  the second term is 
found to be : 
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where ω is the angular frequency.  This expression leads to : 2)31(5.0)( pjtpa +=  for 0 < t < 

2T 3/π  ; 2ppa −=  for  2T 3/π  < t < 4T 3/π  ; 2)31(5.0)( pjtpa −=  for  4T 3/π  < t < T .  
 
DECOMPOSITION OF THE NONLINEAR EQUATION 
The direct solving of equation (1) with the input impedance condition for the calculation of the 
steady-state regime, when losses are taken into account, is rather intricate. It is possible to 
simplify the problem, by considering that the impedance of the first kind of harmonics is very 
small. 
Using  decomposition (5), and a similar one for the volume velocity u(t), equation (1) can be split 
into two equations. These equations are obtained by using simple rules concerning the products 
of the different terms in equation (5), and by assuming that the pressure )(tps is very small, the 
corresponding impedance being small. A third equation is obtained, but it is the conjugate of the 
second one. A treatment of the two equations is possible, as for the case of a clarinet-like 
instrument. Nevertheless a simplification of equation (1) can be obtained by calculating a series 
expansion of the volume velocity, as follows :  
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where the new coefficients are easy to determine. When no losses are present, u(t) is constant, 
and all equations (4), (4a), (4b) remain valid by replacing the coefficients A, B and C by the new 
coefficients.  New equations are obtained, the second one being decoupled from the first one ; 
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Equation (11) is the most important, the solving of (10) being deduced in a second step. Several 
techniques can be used : the complete (numerical) harmonic balance technique, the 
perturbation of the Helmholtz motion solution, and the VTM,  used below. 
 
THE VARIABLE TRUNCATION METHOD (VTM) 
The first order of the VTM is the so-called approximation of the first harmonic. In the present 
case, it is clearly not interesting, because the Helmholtz motion is not symmetrical : at least two 
harmonics need to be considered. We are seeking for tjtj
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The successive higher order harmonics can be deduced successively. Using equation (9), the 
following approximate system is obtained: 
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where '/' BCPQ ii = and 2'/')'( BCAYii −=α , Yi. being the input admittance for the harmonic i. It 

enlarges a result given by [5] for a system with only two resonance peaks, assumed to have 
harmonically related frequencies. These equations can be solved by expansion with respect to 
the parameters α , and the two solutions generalizing (4a) and (4 b) can be found.  
 
APPROXIMATE EXPRESSIONS NEAR THE OSCILLATION THRESHOLDS 
At the second order of the quantities iα , the following result is obtained: 
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When no losses are present ( 021 ==yy ), one get  
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instead of the exact result, given from equations (4b) and (6) : 
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The VTM produces an error of 17% for the first harmonic (10% for a clarinet-like instrument, see 
[1]), and 18% for the second one. Another calculation for the other solution, corresponding to 
(4a) gives the same order of magnitude. It is therefore possible to use the approximation when 
losses are taken into account, and the solutions are compatible with the results of [4] near the 
threshold of the unstable motion..  
For small but non necessarily zero inharmonicity of the two first resonance frequencies, 
equations (12) and (13) lead to the following result : 
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A separation of the thresholds of two regimes is obtained : no solutions exist between the  
values of the real part of the input admittance for the two resonance frequencies ; for )Re( 1y<α , 
the solution is similar to the solution (4b), for negativeα , and the motion is an unstable, 
standard Helmholtz motion, the second harmonic vanishing at the threshold. For )Re( 2y>α , we 
get an inverse, stable Helmholtz motion, but its amplitude starts with a non zero value, because 
the second harmonic does vanish at threshold (see equation (13)). When losses tend to zero, 
this solution tends to the solution (4b) for positive α , with no gaps between these two solutions. 
This situation was described in [5, figure 8], from numerical solutions.   A third regime exists 
also : the octave regime, similar to the fundamental regime of a clarinet-like instrument, i.e. with 
a direct bifurcation.  
 
CONCLUSION 
The VTM allows to describe analytically and to understand the separation of thresholds due to 
losses. It also allows to get solutions at a finite distance of the thresholds. Further work is in 
progress concerning the higher harmonics, the normal regime (4a), with its subcritical threshold, 
its spectrum and playing frequency, and the use of another method, more appropriate for large 
oscillations, based on the perturbation of the Helmholtz motion. 
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