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ABSTRACT 
 
Various methods for time-domain simulation of woodwind instruments have been developed 
over the past few of decades. Part of these have been principally aimed at understanding the 
mechanisms of sound generation in woodwinds, while others have been developed mainly for 
application to musical sound synthesis. This paper reviews techniques for linear modelling of 
the bore in the context of musical sound synthesis, and discusses a new method that 
overcomes some of the problems of previously developed methods. 
 
 
INTRODUCTION 
 
This paper discusses simulation of reed woodwind tones via physical modelling, using a time-
domain (TD) formulation. The advantages of using physical modelling in comparison with other 
sound synthesis methods have been discussed in detail in various previous studies (see for 
example [1]). For physical modelling of wind instruments, the bore is usually assumed to behave 
linearly (except at high amplitude oscillations), and the generation of self-sustained oscillations 
in the bore is simulated with a model of the interaction between the reed and the bore. 
 
For application in a musical context, the final physical model that is used for the simulation of 
woodwind tones should fulfil a certain set of criteria. Jaffe [1] has discussed a large set of 
criteria for sound synthesis methods in general; for the specific case of simulation of the bore of 
a reed woodwind instrument, we can identify three main criteria: accuracy, efficiency, and 
tonehole parameterisation. The first of these is obvious; in order to generate realistic sounds, 
the laws and equations embedded in the model should form an accurate representation of the 
physical mechanisms of the real instrument. The second criterion is typically associated with 
application in a musical context, in which it is often considered desirable to run and control the 
simulation in real-time. Due to hardware limitations such as processing power, a certain level of 
efficiency is necessary to enable real-time simulation. Even for simulations that are not running 
in real-time, the effectiveness of the exploration of the musical potential of a physical model 
largely depends on the trade-off between accuracy and computational efficiency. The third 
criterion stems from the fundamental musical concept of pitch variation. In a real woodwind 
instrument, the player controls the pitch via opening and closing toneholes. For simulation of 
note-to-note transients, a physical model should be constructed in such a way that the state of 
each tonehole can be adjusted continuously. Moreover, such dynamic control of the tonehole 
states should be simple and efficient, preferably using only a small number of arithmetic 
operations.  
 
In this paper, previously developed methods for modelling the bore are reviewed in the light of 
these criteria, and a new method (the Wave Digital Modelling Method) is briefly discussed and 
applied to the simulation of clarinet tones. 
 
 
 



 
 
REVIEW OF METHODS FOR LINEAR TIME-DOMAIN MODELLING OF THE BORE 
 
Several different techniques for linear TD modelling of wave propagation in an acoustic bore 
can be found in the literature. Under the assumption of linearity, wave propagation is governed 
by a three-dimensional wave equation. TD simulation can thus be considered as solving a wave 
equation for certain given boundary conditions and input-signals. Note that for woodwind bores, 
the boundary conditions are not necessarily constant; for example, opening a tonehole amounts 
to changing a boundary condition. Standard techniques for numerically solving a wave equation 
can be applied; perhaps the best known of these are Finite-Difference (FD) methods and Finite-
Element (FE) methods, which both are highly accurate and thoroughly tested techniques. 
However, even for today’s standards of commonly available processing power, such numerical 
formulations are computationally far too expensive for direct application to musical sound 
synthesis.  
 
More efficient descriptions can be obtained by making two simplifying assumptions. First, the 
main bore of a musical woodwind instrument is usually either cylindrical or conical, or 
approximately one of these. As a consequence, only the primary mode can propagate at 
frequencies below cut-off throughout the instrument, i.e., all higher modes are evanescent at 
frequencies which are of interest to the sound generation mechanism. Wave propagation in the 
cylindrical and conical parts of the bore may therefore be described with a one-dimensional 
wave equation. Small units such as toneholes can be modelled as lumped elements, while the 
bore termination may also be treated as a lumped element. Second, the acoustic variables do 
not have to be known at each position inside the air column. For example, for modelling the 
interaction between the bore and the driver, only the pressure and volume velocity at the 
mouthpiece-end need to be computed. In principle, the bore itself may be characterised by an 
impulse response; for a given volume velocity, the mouthpiece pressure can be computed by 
means of convolution. A general framework for simulation of sustained musical tones on this 
basis was developed by McIntyre et al. [2], and over the last few decades, several specific 
woodwind instrument applications of this convolution (CV) approach have been developed (see 
for example [3]). The efficiency of CV methods largely depends on the length of the impulse 
response.  
 
Alternatively, the bore response can also be modelled as a finite set of resonances. Typically, 
only the first 5 to 10 resonances influence the sound generation mechanism, thus the response 
of the bore may be represented with just a small number of natural modes, each modelled as a 
second-order oscillator. Such an approach, which is often referred to as modal synthesis (MS), 
has been taken by Adrien [4], and has recently been proposed for simulation of brass 
instruments by Vergez [5]. Because of the truncation of the number of modes, MS is generally 
less accurate but more efficient than CV methods. 
 
The main disadvantage of both CV methods and MS is that they do not allow for a direct form of 
tonehole parameterisation. With CV methods, the impulse response only represents one 
particular configuration of the tonehole states; for dynamic modelling of the toneholes, a large 
set of different impulse responses would have to be calculated off-line, and the pressure 
response for time-varying tonehole states could in principle be computed by interpolating 
between these impulse responses. A similar formulation could be used in the MS approach. 
However, such parameterisation is difficult and elaborate, and adds significantly to the overall 
computational load. 
 
A much more efficient and simple parameterisation is possible with a one-dimensional wave 
propagation model in which the acoustic variables are computed at all the tonehole positions. 
This way, the effect that the opening and closing of a tonehole has on the bore response can be 
modelled on basis of the relatively simple mathematical relationship between the local acoustic 
variables and the tonehole state. Further efficiency is gained by modelling the acoustic variables 
at all discontinuities in the bore. That is, the acoustic variables are computed at all points in the 
bore at which a one-dimensional wave is reflected; we will refer to this approach as travelling-
wave (TW) methods. Table 1 summarises the properties of the different methods for linear 
modelling of the bore. 



 
 

METHOD ACCURACY EFFICIENCY TH PARAMETERISATION 
FD high low yes 
FE high low yes 
CV high medium no 
MS medium high no 
TW medium high yes 

 
Table 1: Properties of various methods for linear TD modelling of the bore. 

 
Two methods that are based on the concept of transmission and reflection of travelling waves 
can be found in the literature, namely digital waveguide modelling (DWM) and the multi 
convolution algorithm (MCA). These approaches differ mainly in the details of the numerical 
formulation. The main advantage of the DWM approach is that it allows the adjustment of the 
balance between accuracy and efficiency. Frequency-dependent phenomena (such as 
boundary or radiation losses) are modelled using a digital approximation of a continuous-
domain formulation, where both the continuous formulation and the digital approximation 
technique may be chosen freely. In this respect the MCA approach is more limited, since it 
relies on the possibility of performing analytic inverse Fourier transforms of continuous-domain 
formulations.  
 
For both methods, instability problems can occur in numerical simulations of conical sections. 
While it has been shown that (1) continuous-time TW models of conical bore systems are in 
principle stable [6,7,8], and (2) both the DWM and the MCA approach can be used to compute 
the discrete impulse response of an acoustic bore that contains conical sections without any 
instability problems [9,10], it has yet to be shown under which conditions either method actually 
remains stable. In fact, Scavone [9] has reported numerical instability when using DWM 
techniques with long simulation times. 
 
Another obstacle of the DWM approach is that it does not provide methods for modelling of 
toneholes in a conical bore. This shortcoming stems directly from the fact that DWM techniques 
are specifically defined to simulate distributed systems; as a consequence, incomputable loops 
are created when a conical section is directly connected to an acoustic unit with a non-zero 
instantaneous reflection (such as a tonehole). In the MCA approach, this particular problem is 
avoided by lumping the tonehole and the cone taper discontinuities together. 
 
 
THE WAVE DIGITAL MODELLING METHOD 
 
The wave digital modelling method (WDM) makes strong use of the classical analogy between 
electrical and acoustical systems, and combines DWM techniques with wave digital filter (WDF) 
techniques. WDF techniques are used for discretisation of analog networks [11]. The resulting 
digital networks are called wave digital filters (WDFs). The classical analogy between electric 
and acoustic systems raises the possibility of employing WDF techniques for the discretisation 
of lumped elements in a model of an acoustic system. WDF techniques are similar to DWM 
techniques in the sense that they both digitise continuous-time models using wave variables. As 
already suggested by Smith [12] and recently elaborated by Bilbao [13], a combined approach is 
possible. In the present study, lumped elements are modelled using WDF techniques and 
distributed elements are modelled using DWM techniques.  
 
The procedure for the derivation of the wave digital model of an individual bore component is 
similar to the derivation of a wave digital filter, and consists of three steps: 
 

(1) decomposition of the acoustic variables into wave variables. 
(2) discretisation of frequency-dependent elements. 
(3) satisfaction of the computability condition. 
 

Step (1) is accomplished by using the following relationships: 
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where for port i, is the pressure and U is the volume velocity, while  and  are the wave 
variables. The quantity  has the dimension resistance and, following WDF theory, is referred 
to as the port-resistance. In the case of a distributed acoustic element, the wave variables 
represent pressure-waves travelling through a certain medium. The port-resistance then equals 
the reference impedance that characterizes the medium; in the case of a wave travelling 
through an air-filled pipe, this is the characteristic impedance 
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ScρZ =0 , where S is the cross-
sectional pipe area, ρ is the mean air density, and c is the wave velocity. In the case of a 
lumped acoustic element, the wave variables do not represent waves that actually travel any 
distance; the decomposition is in this case merely a matter of mathematical description, and 
from an acoustical point of view the port-resistance may then be considered arbitrary. As in the 
derivation of WDFs, this freedom of choice is exploited to avoid delay-free loops in the final 
modelling structure.  
 
Step (2) concerns the approximation in the digital domain of linear, frequency-dependent, 
continuous domain phenomena, which is realized in the present study by means of digital filter 
techniques. Lumped circuit elements, such as inertances and compliances, are discretised via 
the bilinear transform. Discretisation of other frequency-dependent phenomena, such as 
viscothermal losses, are predominantly carried out by means of infinite impulse response (IIR) 
filters, while Lagrange FIR interpolation filters [14] are employed for digital approximation of 
fractional delay lengths. 
 
Step (3) is concerned with the computability of the resulting digital structure. Like a digital filter, 
a wave digital model is described mathematically by a system of difference equations. Such a 
system is called computable if the arithmetic operations prescribed by these equations can be 
ordered sequentially at each discrete-time instant [11]. In practice this condition is satisfied if the 
system contains no delay-free loops. In a wave digital model, such delay-free loops may arise in 
the discretisation of a lumped element. Following WDF theory, these loops are ensured to have 
at least one delay by choosing the appropriate port-resistance of that loop.  
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Figure 1: Wave digital modelling of a woodwind bore. (a): Example bore. (b): Equivalent network. Each TL-
unit indicates a uniform transmission-line, and Zs is the open-end impedance. (c) Wave digital model. Rs is 
the open-end reflectance. (d): Discrete-time model of lossy wave propagation in a conical or cylindrical 
section using a cascade of a delay-line, a fractional delay filter (FDF), and a loss-filter. (e): A conical 
junction inertance modelled in discrete-time as a single delay, interfaced to the main bore with a three-port 
junction. (f): Wave digital tonehole model, using a wave digital reflectance filter (Rs), which has coefficients 
that depend on a single tonehole state parameter. 
 



 
 
 
SIMULATION OF PIECEWISE CONICAL BORES WITH TONEHOLES 
 
A woodwind bore may be considered as a succession of conical and cylindrical sections with a 
set of open or closed holes in their sides [15]. As pointed out by Benade [16], a conical section 
may be described with "an equivalent circuit consisting of a pair of inertances, a transformer, 
and a non-tapered duct that has the same length and small-end radius as the cone to be 
represented". A tonehole may be described as a shunt impedance [17]. Using these 
descriptions, a piecewise conical bore with toneholes may thus be modelled as depicted in 
figure 1. A junction without a tonehole can be modelled as a single inertance defined as the 
parallel combination of L  and L . The transformers are omitted from the network description, 
which does not affect the response of the bore at the bore entry. For each conical section, the 
junction inertances at the entry and the end are defined as 
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where r  and  are the distance to the cone apex and the cross section at the left and 
the right end of the cone, respectively. For a partially open tonehole, the shunt impedance may 
be described as an inertance in parallel with a compliance [18]. The wave digital tonehole model 
(see Figure 1f) , that is directly derived from this formulation, takes the form of a three-port 
junction with a wave digital reflectance filter, the coefficients of which depend on a single control 
parameter that varies between 0 (=closed) and 1 (= open) .  
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A discrete-time model can be derived by applying the steps described in section to each of the 
components, which results into the discrete-time structure depicted in Figures 1d, 1e, and 1f; 
the complete discrete-time modelling structure of an example woodwind bore  is shown in 
Figure 1c. For details of the derivation of these structures, we refer to [18,19]. 

 
With regard to the stability of conical bore simulations, the method was tested for various bore 
configurations [18]; the main conclusion is that the simulations are stable only in cases where 
viscothermal losses are not taken into account in any of the conical sections. Furthermore, the 
results indicated that for stable simulation of lossy conical sections, a consistent formulation of 
the propagation constant has to be employed. That is, the junctions have to formulated with the 
same propagation constant as the transmission-lines; this is not the case for the WDM method 
when using equations (2), and also not for other TW methods available in the literature. 
 
 
CLARINET SIMULATION 
 
The dimensions of the main bore and the toneholes of a Selmer clarinet (no. 1400) were 
measured. The part of the bore starting directly after the hole that is closest to the open end is 
considered as the bell. The bell is typically mildly flared, and may be approximated with a small 
number of piecewise conical sections. The inter-hole sections are assumed to be approximately 
cylindrical; calculations with a transmission-line model showed that this simplification causes 
only a very small error. The mouthpiece is modelled with a tapered section (which connects to 
the main bore) and a cylindrical section (that represents the entry section to which the reed is 
clamped). Figure 2 shows the input impedance of the complete clarinet bore as computed with 
the transmission-line model and the wave digital model. Note that the differences between the 
two impedance curves are extremely small.  
 
For generation of sustained notes, this wave digital model of the clarinet bore has to be coupled 
to a reed excitation model. For this purpose, the non-linear reed oscillator described in [18,20] is 
a suitable candidate, since it takes into account the effects of the reed curling on the 
mouthpiece lay. The parameters of this lumped reed model are varying with reed deflection, and 
are derived from a finite-difference simulation of the reed-mouthpiece-lip system. As shown in 
[18], this phenomenon has strong influence on the timbre of the radiated sound. 
 



 
Figure 2: Input  impedance of the Selmer clarinet, with fingering for note F3. 

 
 
CONCLUSIONS AND FUTURE RESEARCH 
 
Simulation of woodwind tones was discussed, with emphasis on linear modelling of the bore. 
The wave digital modelling method was discussed, and applied to the simulation of a Selmer 
clarinet. Comparison with a transmission-line model show a high accuracy at frequencies below 
cut-off. Given that the WDM method is efficient, and allows direct tonehole parameterisation, it 
forms a suitable basis for physical modelling of woodwinds. However, future research is 
required for stable simulation of conical bore systems with inclusion of viscothermal losses. 
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