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ABSTRACT 
Linear and nonlinear vibrations of shallow spherical shells with free edge are investigated 
experimentally and numerically and compared to previous studies on percussion instruments 
such as gongs and cymbals. The preliminary bases of a suitable analytical model are given. 
The prime objective of the work is to take advantage of the specific geometry of perfectly 
isotropic and homogeneous spherical shells in order to isolate the influence of curvature from 
other possible causes of nonlinearities. Hence, combination resonances due to quadratic 
nonlinearities are especially studied, for an harmonic forcing of the shell. Identification of excited 
modes is achieved through systematic comparisons between spatial numerical results obtained 
from a finite element modeling, and spectral informations derived from experiments. 
 
 
 
INTRODUCTION 
Vibrations of percussion instruments such as cymbals and gongs are essentially non-linear. 
This is due to the large deflections of the instrument, especially at the free edge, when struck by 
the blow of a mallet. Today, no theoretical model has been developed for these instruments and 
it is the aim of the present paper to contribute to filling this gap.  
 
Our investigations started with an experimental study on cymbals subjected to an harmonic 
excitation [1]. While keeping the excitation frequency fexc constant and increasing the amplitude, 
three distinct vibrational regimes were exhibited. The first one is periodic, defined by an 
harmonic spectrum governed by fexc. A first bifurcation leads to the apparition of other spectral 
components, of frequencies that are incommensurate with fexc, the resulting vibration being 
quasi-periodical. A second bifurcation leads to the third regime, which is chaotic. As a first 
attempt to write a physical model, a study was conducted on circular plates [2,3], which has led 
to a theoretical understanding of the periodic regime, validated by experiments. It was shown in 
particular that the problem can be modeled by a set of coupled second order nonlinear 
oscillators. The next step was then to study the quasi-periodical phase of the vibration. 
 
Our second study of percussion instruments was conducted on a large orchestral gong (or 
Chinese tam-tam) [4]. The same route to chaos than for the cymbals was observed, and the 
quasi-periodical regime was especially investigated. Two results suggested us to think that 
quadratic non-linearities are to be considered in the model. The first result is that the flexural 
motion of the gong shows a clear distorsion due to the presence of a quadratic nonlinearity in 



the oscillators. The second result is that the observed combination of resonances are governed 
by frequency relations of the form: 
 
 

mfnfexcf +≈  or 
n2fexcf ≈  (1) 

 
where excf  is the excitation frequency, mf  and nf  are eigenfrequencies of the gong. These 
frequency relations where also observed in the case of the cymbal [1], and are typical of 
quadratic nonlinearities [5]. These quadratic nonlinearities are a consequence of the curved 
geometry of the gong [6]. As a consequence, the flat plate model of [2] is inadequate since it 
exhibits cubic nonlinearities only. Our present objective is to investigate the nonlinear properties 
of a perfectly curved structure, of geometry as close as possible to those of gongs and cymbals, 
in order to facilitate the derivation of a theoretical model. The difficulties with real gongs are due 
to both their particular geometry and structure inhomogeneities [4]. The selected structure is a 
spherical cap. A number of caps, with different thickness, diameter and curvature, were 
especially designed in order to examine the influence of geometrical parameters on the 
quadratic non-linear effects. The caps are made of brass and are assumed to be perfectly 
homogeneous.  
 
The next section is first devoted to an experimental linear modal analysis of the spherical caps. 
It enables to make several comparisons, first with circular plates, and then with the gong studied 
in [4]. In the nonlinear regime, several combination of resonances are reported. They are found 
to be similar to those observed in gongs and cymbals. In section 3, a theoretical model for non-
linear transverse vibrations of a spherical cap with free edge is presented, in order to highlight 
the relevant parameters of the problem. The successive steps for the resolution of the problem 
are described.  
 
 
EXPERIMENTS 
The set-up is similar to the one used for the experimental study on gongs [4] and is extensively 
described in a more recent paper [3]. Only the main features are given here. The spherical shell 
is freely suspended by means of nylon threads (guitar strings). Is has been checked that the 
suspension does not alter significantly the values of eigenfrequencies and decay times. A small 
magnet is glued on the structure, and driven by a fixed coil. 
 
Modal analysis 

 
Figure 1 : Geometry of the shell. Left: cross-sectional view. Right: top view. 

 
Shell index Radius of curvature 

R (mm) 
Thickness h 

(mm) 
X= a2/Rh 

1 925 1 98.4 
2 1515 0.9 66 
3 1515 1.5 39.6 
4 4505 1 20 

Table 1: Geometrical and elastic parameters of the shells. X is a nondimensional coefficient. 
 
The geometries of the four shells used in our experiments are shown in Fig. 1 and Tab. 1. The 
eigenfrequencies of the shells are measured by exciting the structure with a filtered white noise. 
They are compared to those derived from a theoretical model of spherical shells with free-edge 
found in [7]. These eigenfrequencies are written: 
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In Equation (2), a is the radius, R the radius of curvature and h the thickness are (Fig. 1). knù  

denotes the eigenfrequency of the shell mode with k nodal diameters and n nodal circles, knù~  
denotes the corresponding eigenfrequency of the circular plate of same radius a. The 
coefficients knµ  are the nondimensional numbers corresponding to the eigenvalues for a 
circular plate with free edge [8,2]. One can see in Equation (2) that the eigenfrequencies of the 
shells differ from the ones of the corresponding plate through the nondimensional geometrical 
parameter X only. In particular, Equation (2) gives the eigenfrequencies of a thin circular plate 
when X=0 ( +∞→R ). In the analytical procedure, the frequencies have been first calculated 
nondimensionally. The density is measured in a straightforward way. The Young’s modulus 
corresponds to a standard value for brass. The value of the thickness h is adjusted so that the 
theoretical frequencies fit the experimental ones. The values are listed in Table 2. Table 3 gives 
the values of the coefficients knµ  and the theoretical and measured shell eigenfrequencies 

knω , for shell number 2 referenced in Table 1. 
 

Material Young’s mod. 
E (N/m2) 

Density ρρ  
(kg/m3) 

Radius a  
(mm) 

Poisson’s 
coefficient νν  

Brass 85 109 7.97 103 300 0.3 

Table 2: Measured parameters of the shell. 
 

Mode index Circular plate 
coefficient µµ 

Theoretical freq. 
(Hz) 

Measured freq. 
(Hz) 

(2,0) 5.25 8.9 ? 
(3,0) 12.20 21.4 ? 
(4,0) 21.6 38.1 35.3 and 35.6 
(5,0) 32.28 58.7 57.6 and 58.4 
(6,0) 46.2 82.9 83.2 and 83.9 
(7,0) 62.0 110.5 110.8 and 111.9 
(8,0) 81.0 141.1 141.3 and 142.0 
(9,0) 102.5 211.5 208.5 and 213.4 
(10,0) 126.5 251.5 244.5 and 250.1 
(11,0) 153 293.8 292.2 and 295.1 
(12,0) 182 339.5 334.4 and 338.3 

    
(0,1) 9.1 342.1 224 
(0,2) 38.6 348.3 354 

Table 3: Theoretical and measured eigenfrequencies of spherical shell Nr 2 (X=a2/Rh=66). The 
first index refers to the number of nodal radii, while the second indicates the number of nodal 

circles. 
 
In contrast to the case of gongs, Table 3 shows that the frequencies of a relatively large number 
of asymmetric modes are smaller than the lowest axisymmetric mode (0,1). This property is a 
consequence of essentially two facts: 
a) The edge of the shell is free, and thus its transverse motion is significantly less constrained 

than in the case of a gong with a stiff ring [4]. 
b) The geometry of the shell is curved, which yields more stiffness than for the gong, 

especially in its central part. This property is also responsible for the fact that asymmetric 
modes with at least one nodal circle ( 0k ≠ , 1n ≥ ) have eigenfrequencies lower than f0,1. 

 
The asymmetric modes are grouped here by pairs, for which both configurations have almost 
identical eigenfrequencies. The corresponding modal shapes have the same pattern, with a 
quadrature spatial phase shift (see Fig. 2). This special feature comes from the fact that in a 



perfect structure of revolution, each asymmetric eigenfrequency degenerates into two 
independent modes [9,2]. The slight differences between the measured frequencies of both 
configurations in the case of our spherical caps (see Table 3), are due to small imperfections, 
mainly induced by the nylon threads. They appear to be negligible with respect, for example, to 
the differences measured in the case of our gong [4]. This can be explained by the fact that the 
gong shows structural and material inhomogeneities due to hammering and thermic treatment 
during its making [4]. Taking into account the existence of two configurations for the  
asymmetric modes is essential, as these configurations are independently taking part in the 
combination of resonances which are usually observed [4,2]. 
 
 

Table 3 shows an almost perfect agreement between calculated and measured 
eigenfrequencies except for the lowest axisymmetric mode. This effect might be due to the 
presence of the magnet (0.5 g) glued at the center of the shell. However, more systematic 
experiments and calculations are needed here in order to validate this assumption. 
 

       
Figure 2. From left to right: the two configurations of the (6,0) asymmetric mode, and modal 

shape of the axisymmetric (0,2) mode for the spherical cap. 
 
Combination of resonances in the non-linear regime. 
 

Forcing frequency 
(Hz) 

combination of resonances 
(Hz) 

subharmonics (Hz) 
(particular case) 

224 (0,1)  112 (7,0) 
354 (0,2) 318 (11,0) shifted+ 35 (4,0)  

 247 (10,0)+ 107 (7,0) shifted  
 211 (9,0)+ 143 (8,0)  

444 (0,3)  222 (0,1) 
 336 (12,0) + 108 (7,0) shifted  

Table 4: Summary of the most prominent experimentally observed combination of resonances. 
 
Table 4 shows some examples of observed combination of resonances, for the cap Nr 2 (see 
Table 1) excited at its center with an harmonic force of frequency successively adjusted to one 
particular axisymmetric eigenfrequency. All combinations of resonances in Table 4 correspond 
to the two cases presented in Equation (1). Fig 3 shows the velocity spectrum of the cap excited 
at 354 Hz (f02). These phenomena are similar to those observed in cymbals [1] and gongs [4]. 
 

 
Figure 3: Velocity spectrum of one selected point on the cap. Fexc=348 Hz. The resonances 

excited through quadratic nonlinearities (see Table 4) are clearly visible. 



THEORY 
Governing equations 
The nonlinear partial differential equations in polar coordinates for the spherical cap are the 
following [10]: 
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In Equations (3)-(6), w refers to the vertical transverse displacement, F is the Airy stress 
function and t)è,p(r,  is the external pressure. D is the flexural rigidity. The underlying 
assumption are that w is of the order of the shell thickness, and that the shell is shallow 
(h<<a<<R). Letting +∞→R  in Eqs (3)-(4) yields the nonlinear equations for a nonlinear plate 
[2]. The case 0L =  corresponds to the linear spherical shallow shell model. Both conditions 
together lead to the well-known linear plate equations. The curvature factors (proportional to 1/R 
in Eqs. (3) and (4)) are responsible for a linear coupling between the transverse displacement w 
and the longitudinal stretching of the shell elements (which is a function of F). Equation (5) 
shows that )w,w(L  is a quadratic function of the displacement w. As a consequence, the Airy 

function F is both linear and quadratic in w through (3). Similarly, R/F∆ is a quadratic function 
of the displacement in (2), whereas )F,w(L  has quadratic and cubic terms in w. This important 
feature illustrates the fact that both cubic and quadratic terms necessary coexist in the nonlinear 
spherical shell equations, in contrast to the nonlinear plate equations which contain cubic terms 
only. To summarize this discussion, one can say that the quadratic nonlinearity is due to the 
coexistence between the nonlinear function L and the linear curvature terms.  
 
 
Modal projection and resolution. 
The solution w is expanded onto the linear eigenmodes of the shell: 
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where pÖ  is the pth modal shape. With little mathematics [11], one can show that the time 

functions pq  are solutions of a infinite set of nonlinear second-order differential equations, 

coupled by quadratic and cubic terms: 
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In Equation (8), pä  and pQ denote the damping coefficient and the forcing of the pth mode, 

respectively. Coefficients uvpá  and suvpÃ  are functions of the modal shapes pÖ . 

 
The next step consists of truncating the infinite set of Equation (8) by assuming that the forced 
vibration of the shell is governed by a finite number of modes only [5]. The quasi-periodic 
regime corresponding to a subharmonic resonance between mode (0,1) and mode (7,0), for 
example, is governed by three oscillators: the first oscillator corresponds to mode (0,1) (of 
frequency 224Hzf01 = ), and the two other oscillators correspond to the two configurations of 



mode (7,0) (of frequencies 110.8Hzf 1
70 =  and Hz111.9f 2

70 = , respectively), The vibration 
shown in Figure 3 can be described by at least a set of five oscillators, sine at least one 
axisymmetric and two asymmetric modes are nonlinearly coupled. The resolution of the 
resulting problems for a finite number of oscillators can be either performed by approximate 
analytical methods such as the multiple scale method [5], or by a direct numerical resolution 
(using a Runge-Kutta algorithm, for example). This work is currently in progress. 
 
 
 
CONCLUSION 
So far, our study on the large magnitude forced oscillations of thin shallow spherical shells with 
free edge can be summarized as follows: 
Like for the gong, combination resonances dues to quadratic nonlinearity are present. These 
resonances are governed by frequency laws, such as Eq. (1). For thickness, radius and 
diameter comparable to gongs, the rank of the lowest axisymmetrical modes is significantly 
higher for a spherical shell. This property is due to the free edge of the shell, compared to the 
relatively stiff edge of gongs, and to the more pronounced curvature of the cap. In practice, this 
means that a significant number of combination resonances can be found here for the (0,1) and 
(0,2) mode, whereas one had to excite at frequencies at least equal to the (0,3) mode of the 
gong in order to obtain a large number of combinations. For spherical shells with free edge, the 
lowest frequencies are essentially asymmetric (n,0) modes. The homogeneity of the shell 
facilitates the analysis in the sense that each asymmetric mode is characterized by a doublet of 
frequencies with close values. This analysis is confirmed by numerical experiments. In addition 
to the interest of comparing spherical shells with gongs, in the context of musical acoustics, our 
measurements contribute to yield experimental and numerical data on shells with free edge, for 
which there are very few published papers, as far as we are aware.  
 
The nonlinear phenomena encountered in gongs and cymbals, and more generally in thin 
structures, are due to geometrical nonlinearities, and directly linked to the large amplitude of the 
vibrations (of the order of the thickness, or even larger. In the particular case of spherical shells, 
it has been shown in Equation (8) that the curvature is responsible for the presence of the 
quadratic terms. From the present comparison between nonlinear behavior of shells and gongs, 
which shows high similarity in the nonlinear quasiperiodical regime, one can reasonably claim 
that the imperfections observed in gongs have relatively no effect on the nonlinear behavior of 
these instruments compared to the curvature. 
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