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ABSTRACT A material model for softwood is presented where a combined lamiate and hon-
eycomb model of wood is used. The model considers the influence from density variations in 
the annual rings, the cellular structure of wood, and the reinforcement from the wood rays. A 
numerical example that uses the material model is presented where stochastic optimization with 
the simulated annealing method (SA) is performed on a violin top made of Norway spruce 
(Picea Abies). The example shows that it is possible, through changes in thickness variables, to 
compensate for changes in vibration properties caused by a variation in the material parameters 
in the top. 
 
 
 
INTRODUCTION 
Wood material has a natural distribution of mechanical properties. Blanks for violin tops may 
have different density and elastic moduli, which in its turn means that the thickness or the rise of 
the arch must be adapted for each individual case. The vibration properties of the violin plates 
have been extensively studied both experimentally, e.g. Jansson et al. 1970 and numerically, 
e.g. Molin et al. 1984; Molin et al 1986 and Bretos Linaza et al. 1999. In the present work, opti-
mization is used to give some suggestions on how to adapt the shape of the top for materials 
with different mechanical properties. The carefully chosen blanks make it meaningful to make 
more detailed material models than usual. In the material model presented in this paper, influ-
ence of density and volumetric variations in the annual rings, as well as the cellular structure of 
wood and the reinforcement from the wood rays are considered (influence from other cell types 
is not considered. A more thorough description of the wood structure is e.g. given in Kollman 
and Coté 1984).  
 
 
 
WOOD MATERIAL MODEL 
The special outtake of quarter sawn lumber as blanks for violin tops (Fig. 1) makes it possible to 
build up an adapted material model for the calculations. Furthermore, since the blank is rather 
thin and straight-grained, common laminate theory combined with the honeycomb model of the 
wood structure, gives a possibility to establish connections between the density of the material 
and the elastic properties. 
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Fig. 1. A quarter sawn board to the left, showing 
the edge of the annual rings on its broad face, 
and a flat sawn board to right showing the side of  
the rings (adapted from Simpson 1991). 

Fig. 2. Schematic model of  the wood mate-
rial with concentrated volume fractions of 
earlywood (to the left), latewood (to the 
right), and wood rays (cylinder in the middle).
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List Of Symbols 
Ea, Er,Et, elastic moduli in the axial (longitudinal), radial and tangential direction according to 
Figure 2. 
Eae, Eal, Ere, Erl etc, elastic moduli for earlywood and latewood in the axial direction etc. 
Ewr elastic modulus in radial direction for wood rays. 

C
aE , , elastic moduli of the cell wall in the axial and transverse directions. C

trE
C
wrE , elastic modulus of the wood ray cell wall in radial direction. 

Gar, shear modulus in the a-r direction. 
Gare, Garl, shear moduli for earlywood and latewood. 

C
arG , shear modulus of cell wall in the a-r direction. 

Ve, Vl, Vwr, volume fractions of earlywood, latewood and wood rays in the blank, see Fig 2. 
ρ, density of the blank (top). 
ρe, ρl, ρwr, density of earlywood, latewood, and wood rays in the blank. 
ρc, density of the cell wall. 
 
 
 
Laminate Model Of Annual Rings 
The orientation of the lighter and weaker earlywood, together with the darker and stronger late-
wood, builds up a laminate in a violin top according to Figure 3. Also, the thin material (about 3 
mm) in the completed top makes the curvature of the annual rings negligible. The orientation of 
the fibres in the axial directions, and the lamina structure of earlywood and latewood in the 
transverse directions, would normally lead to an expected relationship of the elastic moduli as 
Ea >> Et > Er, but since the wood rays serve as a reinforcement in the radial direction, the rela-
tionship is Ea >> Er > Et. (Other factors are also believed to contribute to the relationship, such 
as different properties of the cell wall in the radial direction compared to the tangential, different 
angle of microfibrils in radial and tangential surfaces etc.) If the influence of the wood rays is 
neglected in the longitudinal and tangential directions, the elastic moduli in these directions, Ea 
and Et, are given by “the rule of mixtures” (see e.g. Hull 1981) as  

 
al

le

l
ae

le

e
a E

VV
VE

VV
VE

+
+

+
=  (1) 

and 

 
tl

le

l
te

le

e
t E

VV
VE

VV
VE

+
+

+
=  (2) 



 

r

r

r

r

r

r

 
 

Fig. 3. Violin top with orientation of the annual 
rings with earlywood and latewood lamina. 
Tangential direction is perpendicular to the 
surface of the top. 

Fig. 4. Honeycomb model of the wood cells 
with cut in the transversal (radial and tangen-
tial) plane. Axial direction is perpendicular to 
these directions (adapted from Gibson and 
Ashby 1998). 
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(Volume fractions according to Fig. 2, more details is given in Carlsson and Tinnsten 2001) To 
estimate the influence of the wood rays in the radial direction, separate calculations must be 
made in the earlywood and the latewood. If elastic moduli for the wood ray reinforced material 
are notated by  and , and parallel displacements are assumed, common laminate theory 
gives 

reE ′ rlE ′
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 rlwrlwrwrlrl EVEVE )1( −+=′  (4) 
where the volume fractions of wood rays in earlywood and latewood, Vwre and Vwrl, are given by 
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dulus in the radial direction, Er, is therefore, with (3) and (4), given by 
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The shear modulus in the a-r direction, Gar, is given by 
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Honeycomb Model Of Wood Cells 
The cellular structure of the wood material has a great influence of the mechanical properties in 
different directions. On a millimetre scale, however, the honeycomb model gives a rather good 
description of the wood cells, see Figure 4. Furthermore, it gives a connection between the rela-
tive density of the wood and elastic moduli in different directions. Relative density is the density 
of the wood divided with the density of the cell wall, where the latter density is almost constant 
for different species of trees (a more detailed description of the mechanics of the honeycomb 
structure is given in Gibson and Ashby 1998).  
 
From the mechanics of the regular honeycomb, the following relations can be found between 
the relative density of the wood and the elastic parameters. 
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and for the elastic modulus of the wood rays in radial direction 
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For the shear modulus, Gar, the relation is 
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which completes the relations of interest in this work.  
 
 
 
Combined Laminate And Honeycomb Model 
If the equations from the previous sections of the laminate model and the honeycomb model are 
combined, a material model that considers both the annual rings and the cellular structure of 
wood can be achieved. Furthermore, the model also offers relations between the relative den-
sity of the structure of the top and its elastic moduli. For the axial, elastic modulus, Ea, equations 
(1) and (7) gives 
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and it is interesting to note that for a given density ρ of the blank, the value of Ea, under some 
assumptions, is independent of the densities of earlywood and latewood, ρe and ρl, and their 
volume fractions Ve and Vl (this is only guilty for Ea). In tangential direction (2) and (8) gives 
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and similar relations can be derived for Er  and Gar.  
 
 
 
OPTIMIZATION AND ANALYSIS 
As optimization routine, the simulated annealing method (SA) is used. The method usually re-
quires a large number of function evaluations to find the optimum design, but it will usually find 
the global optimum even for problems with several local minima (more information of the SA 
method is given in Goffe et al. 1994 and Tinnsten and Carlsson 2001). This quality makes SA 
very suitable for acoustic optimization where numerous local minima occur. The initial (refer-
ence) top is characterized by a given rise of the arch of the top, an initial thickness distribution, 
and an initial set of material parameters. In the optimization, the first three eigenmodes are 
studied, (Fig. 5). For the purpose of optimization the initial material parameter set is replaced 
with a new set. The objective problem is to recover the first three eigenfrequencies in the top 
with the new parameter set by altering the thickness distribution. The shell thickness (ti) at 
nodes along the bold line in Figure 5 are collected in one variable, and the thickness at nodes 
outside this line in another variable. The shell thickness at all other nodes are separately vari-
ables which gives a total number of variables I = 68. The optimization problem is formulated as: 
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where  is the eigenfrequency for the initial top,  is the eigenfrequency for the top 
with the new material set and actual variable set (k=1,3), and I is the number of thickness vari-
ables. The variables α

initial
kf actual

kf

k are so-called penalty variables. 
 

 

 

Fig. 5. Discretization of the violin top, and studied ei-
genmodes, where top is mode 1, middle is mode 2, and 
bottom is mode 3. 
 

Fig. 6. Change in thickness distribu-
tion to reach optimum (values are in 
[mm] and should be added to the 
initial to give the optimum thickness 
distribution). 
 

 
The violin top is discretizised according to Figure 5. In the FE-analyses involved in the optimiza-
tion, a modified version of the finite element code FEMP (Nilsson and Oldenburg 1983), an 
orthotropic shell element is used (Molin et al. 1984; Tinnsten et al. 1999). The nodes along the 
bolded line are prevented to move perpendicular to the plane but free in all other directions. 
 
 
 
RESULTS 
Numerical calculations and optimization are performed on two tops with the same density but 
with one top (the reference top) with wide annual rings and another top with narrow annual 
rings. With material data according to Bucur (1995) and Gibson and Ashby (1998), the refer-
ence top with wide annual rings (see Carlsson and Tinnsten 2001 for more information) was 
given the following data: Ea = 9,470 MPa, Er = 637 MPa,  and Gar = 644 MPa. Poissons ratio is 
given the (constant) value νar = 0.03. With an initial thickness distribution, and the material 
parameters given above, the studied eigenfrequencies were determined to 

,  and . The other top with 
narrow annual rings got the following values of the elastic moduli: E

Hz 282.67 11 == initialff

Hz 505.542 =f 3f

Hz 282.61 11 == optimalff

Hz 508.81 22 == initialff

Hz 537.38 =

Hz 508.5722 == optimalff

Hz 544.37 33 == initialff

kf

544.28 33 == optimalff

a = 9,470 MPa, Er = 580 
MPa, and Gar = 666 MPa. Poissons ratio is the same as before, i.e. νar = 0.03. The new material 
set together with the initial thickness resulted in the following eigenfrequencies: , 

 and . These three frequencies are the first  , in the 
optimization process. After optimization of the top with narrow annual rings, a change in thick-
ness distribution according to Figure 6 was proposed by the SA-routine. With the proposed 
thickness change of the top, the first three eigenfrequencies have changed to: 

,  and  which gives a 
maximal difference of –0.048 %  from the initial eigenfrequencies of the reference top. 
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DISCUSSION 
The optimization problem was to minimize the difference in eigenfrequences for two violin tops 
with different material. Three eigenmodes were studied, and the problem was formulated as: 
minimize the quadratic sum of the difference of each eigenfrequency multiplied by a penalty 
parameter, by modifying the thickness of the top. The differences in eigenfrequency are within 
0.05%, a result which promises much for a future extend of the model. As input values to the 
eigenfrequency analysis, a material model was developed which considers density variations in 
the annual rings, as well as the cellular structure of wood and the reinforcement in radial direc-
tion from the wood rays. It can be noted that the two tops, although they have common density 
and elastic modulus Ea, according to the material model have different elastic moduli in other 
directions which in its turn give other vibration properties. The boundary condition used in the 
analyses in this paper was primarily chosen to show the benefits of using optimization technique 
in eigenfrequency problems.  
 
 
 
 
FUTURE CONSIDERATIONS 
Much work remains to be done in order to understand the behaviour of violins and to be able to 
build good violins from blanks with different material properties. A whole violin must be studied, 
and it is also necessary to improve the material model to take care of wood structure in a more 
proper way.  
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