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ABSTRACT 
Musical signals often present close frequencies producing beats and the classical Fourier 
Transform does not achieve a sufficient resolution to estimate these components separately 
with accuracy. This paper presents a spectral analysis technique for estimating and tracking the 
frequencies, damping factors and amplitudes of each component. SINTRACK associates a 
Matrix Pencil high resolution method with a LMS adaptive algorithm. It detects changes in the 
signal underlying model (as the changing number of sinusoids for example) and can indicate the 
time variations of parameters. Results are shown for a signal recorded from a guitar. 
 
 
1 INTRODUCTION 
 
A wide variety of musical sounds can be described schematically as a sum of harmonically 
related partials. However, the spectrum of a piano or a guitar is more complex. In some partials 
more than one elementary component is included whose close frequencies produce beats. 
These beats are known to be important features of the naturalness of a synthesized musical 
sound. They often result from the particular properties of vibrational systems: a minor lack of 
symmetry in a bell geometry leads to pairs of nondegenerate normal modes; the coupling 
between the strings and the bridge of a guitar is well described by a two dimensional mobility 
matrix, from which frequency doublets are derived [LAMBOURG93]; the  multiple strings of a 
piano note are known to be slightly mistuned by excellent tuners in order to enhance the quality 
of the sound decay [WEINREICH77]. 
 
Under the assumption of linear behavior, the response of those free vibrating systems is a sum 
of exponentially damped sinusoids. The accurate estimation of these elementary components 
parameters is of great concern both in a synthesis context and in a mechanical study. The High 
Resolution (HR) methods have proved to be efficient in this purpose: J. Laroche [LAROCHE93] 
showed an application of the matrix pencil algorithm to various musical signals (piano and 
guitar) and the same technique has been successfully applied to estimate the radiation 
efficiency of a guitar [DAVID99]. Other applications include audio coding [BOYER02] and the 
propagation of mechanical waves in solid media [JEANNEAU98]. 
 



On the other hand, High Resolution techniques are complex and cannot be satisfactorily used 
for components tracking without modification. These methods are based on the assumption of  
a signal model whose parameters are taken constant with time. For example, they can not 
indicate the existence of a slow variation of the decay which could suggest a slight non linear 
behavior. Therefore, it is worthwhile to develop techniques allowing the tracking of the 
components at a lower complexity while keeping spectral resolution and accuracy. This 
constitutes the basic idea of SINTRACK. Our first attempt at applying SINTRACK to musical 
signals was made during the engineering school final work of M. Massabieaux 
[MASSABIEAUX00]. 
 
This paper first examines the principles of HR methods and the theoretical background of the 
SINTRACK algorithm. Then, simulation examples and a musical application will be presented. 
 
 
2. THEORETICAL ASPECTS 
 
SINTRACK [DUVAUT94] associates a HR technique (Matrix Pencil [HUA90]) to a low 
complexity adaptive algorithm (Least Mean Square or LMS). First, the Matrix-Pencil method is 
applied to obtain an initial estimation. Second, the components are tracked using the LMS 
procedure as long as the prediction error remains below a given threshold. When the error 
grows above the threshold, indicating that the model has become obsolete, Matrix-Pencil is 
applied again to reinitialize the frequency components estimates. Given that the complexity of 
the Matrix Pencil algorithm is O(N3) and that the complexity of LMS is O(N), the computational 
cost  of SINTRACK is drastically reduced compared to Matrix Pencil alone if the components 
are well tracked. Also, it is important to note that SINTRACK can be used to detect model 
breaks (for example attacks) in a given signal. These breaks will correspond to frames where 
the LMS prediction error will abruptly grow. 
 
2.1 High Resolution Principles 
 
HR techniques rely on a precise signal model and are conventionally classified as parametric 
methods. This model represents the discrete signal nx as a sum of complex exponentials: 
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where iA , iφ if  iα  respectively represent the initial amplitude, initial phase, frequency and 

damping factor of each component. The estimation of ( if , iα ) is therefore a non linear problem. 
Prony [PRONY1795] first demonstrated that this signal can be predicted by means of a 
polynomial whose roots are the zi's. Finding the coefficients of this polynomial is a linear 
problem. The estimation of iA , iφ can be formulated as a linear least square problem if all other 
parameters are known.  
 
2.2 Matrix Pencil  
 
We first define  two backward data matrices 0X and 1X using N samples of the signal nx as 
follows: 
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Matrix Pencil rely on the rank reducing property of the zi's for the pencil of matrices 01 zXX − . 

The zi's are then derived as the inverse of the eigenvalues of the square matrix 01 XX + , where 



+
1X  denotes the order M truncated pseudo-inverse of the rank-M matrix 1X . +

1X  is obtained 
using the Singular Value Decomposition (SVD) which is expressed as: 

HVUX ∑=1  

where the subscript H denotes the conjugate transpose and where ∑  has M non-zeros 

elements on the diagonal, sorted in decreasing order. Let MU  and MV  be the matrices built 

with the M first columns of U  and V  respectively. +
1X is obtained by inverting the M non-zeros 

singular values in ∑ . This can be written: 
H
MM UVX ++ ∑=1  

It should be noticed that when a white noise is added to the model, the matrix X1 becomes full-
rank, all of its singular values being increased by the variance of the noise. Its M principal right 
and left eigenvectors remain unchanged. The Matrix Pencil method is then applied without any 
further modification. The M selected vectors in matrices MU  and MV  correspond to the M 

largest singular values, denoted as iλ , i = 1...M. The values of the frequencies and damping 

factors are then derived as )2/()arg( πλiif −=  and ii λα ln=  

 
2.3 LMS For Tracking The Poles  
 
The adaptive Least Mean Square algorithm is used to track the poles of the signal once they 
have been estimated with matrix pencil. The prediction coefficients in the backward direction are 
given in the vector bn and thus provide an estimation of xn as a linear combination of his future: 

nn
T
nn ex += +1xb , where xn+1=[xn+1 xn+2 ... xn+p]

T and en is the prediction error. At initial time n=0, 

this vector is given by T
pN

H

MM xxxUV ]   [ 110 −−
+∑−= L0b and updated following the well-known 

relation nne xbb nn 11 −− −= µ  where µ is the adaptation step of the LMS. The poles of the signal 
are derived as the roots inverses of the polynomial p(z) = zp+ [zp-1 zp-2 ... 1]bn.  
 
2.4 Algorithm And Practical Choices 
 
The SINTRACK algorithm can be separated in 2 steps:  
1 initialization: matrix pencil is applied to find the initial values of the zi's and b0  
2 tracking:  

• the roots of p(z) are extracted in order to estimate the updated poles,  
• the corresponding complex amplitudes ( ij

ieA φ ) are estimated by minimizing the 

quadratic error between the real data and the estimates over the range of the p future 
observations, 

• the prediction error is evaluated: if e(n) is above the threshold then the initialization step 
is rerun, else the tracking continues for the following frame. 

 
We now address the problem of parameter tuning for Matrix Pencil and the LMS.  
 
The number M of components is generally unknown. The results of the estimation are much 
affected if M is underestimated. A usual choice is to overestimate the value of M. The true value 
can be approached further regarding the fact that real poles lay outside the unit circle, when the 
others fall inside. 
 
The pencil parameter p is also the prediction order of the polynomial p(z). The variance of the 
estimates is known to be around its minimum for p=N/3. The choice of p is then the result of a 
trade-off between complexity and resolution since a higher resolution is achieved for a greater 
value of N. There is no simple rule to determine the minimum acceptable value of p for a given 
signal with given SNR characteristics. However, in order to separate a pair of beating 
frequencies, an appropriate choice for p is between 1/10 and 1/20 of the beat period in samples 
[LAROCHE93].  



 
The adaptation step µ of the LMS must be chosen and updated to be less than 2/(pEn

2) where 
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This insures the convergence of the algorithm while taking into account the intrinsic non 
stationarity of the signal energy.  
 
At last, the threshold can be chosen following two ways. Either an estimate of the noise 
variance σ2 is known and we can state it as 3σ  for example, or we can consider that the 
initialization step must occur when the prediction error is above a fraction of the maximal 
amplitude (typically situated between 1/10 and ½)  
 
 
3. SIMULATIONS AND APPLICATION TO A PIANO PARTIAL 
 
3.1 Tracking Of A Single Component With Double Decay 
 
This example aims at demonstrate the decay tracking capability of the algorithm. The synthetic 
signal is made of a single component whose frequency is 0.1 samples -1 and a unitary initial 
amplitude (A=1). Its decay takes the values 0.001 and 0.02, one after the other. The onset of 
the component stands on discrete time n=200 and a white gaussian complex noise of 0.001 
standard deviation is added, which corresponds to an overall SNR of approximately 55dB. This 
resembles to the Decay-Release envelope of a musical sound.  
 
The Figure 1 shows the results of the tracking for the frequencies fi and the amplitude Ai, for 
analysis parameters N=80, M = 6 and a 3σ  threshold. The figure does not show the estimation 
of the αi’s whose accuracy is very poor, considering the small value of N. However, they can be 
derived from the Ai’s tracking by a simple linear regression. The figure clearly shows the sudden 
growths of the prediction error at the onset-time and at the decay changing time. We can notice 
that the prediction error remains high in the regions before n=200 and n=800, where model 
jumps occur in the analysis window. 

 
Figure 1: a single component with double decay 

 
 

3.2 Detection Of The Onsets Of Delayed Damped Sinusoids 
 
This example shows the detection capabilities of SINTRACK when components appear and/or 
disappear. The signal is the sum of a complex exponential with parameters f=0.1, α=0.001, A = 



1 and a second one beginning at n=400, ending at n=800 with parameters f=0.12, α=0.004, A = 
1. The additive noise has a standard deviation σ=0.001 (approximately 55dB SNR). The 
analysis parameters remain unchanged from the previous example. The results shown on figure 
2 demonstrate both the accuracy of the estimation and the precision for detecting model jumps. 

 
Figure 2: detection of the onset and the extinction of a sinusoid in presence of an other one 

 
 

3.2 Application To A Guitar Partial 
 
For this application, the E2 note of a classical guitar was recorded and sampled at 48kHz. A 
piezoelectric crystal was specially designed for that purpose and integrated in the saddle. As a 
result, the measured signal is proportional to the transverse force applied by the string to the 
bridge. A preprocessing step was needed both to enhance the resolution and to shorten the 
data. The signal was first filtered with a FIR Remez Filter, designed to isolate the 3rd harmonic 
(partial at 247.5Hz). The filtered signal was then demodulated and downsampled by a factor 
384. The preprocessed signal was complex and 1700 samples long (7 seconds). The results 
are displayed using Hz and seconds for convenience. The analysis parameters were N=80 
(0.64s), M = 6 and the threshold was taken as 1/10 of the maximum amplitude. 

 
Figure 3: results for the 247.5Hz partial, E2 string of a classical guitar 

 



The results displayed on figure 3 clearly show two principal components, one with a high initial 
amplitude and short decay while the other has a much lower amplitude with a longer decay. 
This is consistent with the known properties of free vibrating strings coupled to a bridge: the 
horizontal and vertical polarizations of the vibration are coupled by the bridge which leads to 
frequency doublets. The vertical polarization excites transverse motions of the plate and thus 
corresponds to high initial level and shorter decay [JANSSON83].  
 
These results demonstrate the validity of a complex exponential model for the components of a 
guitar tone. It also allows an accurate estimation of the parameters of these components. 
However, some drawbacks should be mentioned. As the saw-tooth behavior of the prediction 
error suggests, the threshold is often reached. Matrix pencil is therefor frequently applied which 
yields to a greater complexity. To reduce this phenomenon the adaptation step µ  could be 
diminished but at the cost of a less efficient tracking since the convergence of the LMS is 
slower. 
 
 
4. CONCLUSION AND FUTURE WORKS 
 
SINTRACK is an efficient method to study and accurately estimate the musical signals whose 
spectrum is composed with possibly varying close frequency components. By associating a 
High resolution method with a tracking approach, SINTRACK has the potential to accurately 
locate abrupt changes in the signal content and therefore should represent a useful tool for 
signal onset (or transients) detection.  
 
Future works include the study of the attack of musical tones and the estimation of the piano 
decays.  
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