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ABSTRACT 
Nowadays, striking reeds are commonly used for the reed pipes in organs, while in the 19th 
century free reeds were often used in Germany. After being banned during the 'Orgelbewegung' 
at the beginning of the 20th century, free reed pipes are now being used frequently again. 
Because much of the experience concerning those pipes has been lost, the acoustical behavior 
of free reed pipes was simulated using an one-dimensional physical model so as to determine 
the optimal resonator and boot dimensions. 
 
1. INTRODUCTION 
 
The free reed was introduced into the organ by Abbé Vogler at the end of the 18th century. It 
differs in size of the reed and the frame from striking reed pipes which were used exclusively in 
organs beforehand. Free reeds are built in such way that the reed can oscillate freely through 
the frame and does not hit onto the shallot. Due to this alteration, their acoustical behavior is 
very much different from that of the striking reed pipes. Therefore, the dimensions of the 
remaining parts of the pipe (especially those of the resonator and the boot) have to be specially 
adjusted.  
 
In the beginning of the 20th century, the free reed became unfashionable during the 
'Orgelbewegung', a German movement that tried to restore the ideal of the barock organ. But 
nowadays, those type of stops are frequently considered again in new organs. However, some 
of the practical experience concerning those stops has meanwhile been forgotten and a number 
of experiments have to be carried out to restore this knowledge. To reduce the experimental 
effort, a one-dimensional model of a free reed pipe was developed and compared to existing 
data. 
 
2. EXPERIMENT 
 
Method 
 
Two free reed pipes of the stop Klarinette 8' (C4, Klais, Bonn) were used for the measurement 
that has already been presented at a meeting of the German Acoustical Society (Braasch et al., 
2000). One of them had a cylindrical resonator of 38.5 cm length (the resonator length is here 
defined as the distance between the tuning wire in tuned position and the open end of the 
resonator). By fixing a second tube onto the resonator that was slightly wider than the 
resonator, its length could be adjusted to any length between 46 cm and 65 cm. The second 



free reed pipe that was used in the measurement had a conical resonator (40 cm length) which 
could be extended by 4 additional conical parts in steps of 5 cm to a maximum length of 65 cm. 
 
The frequency of the reed of the cylindrical free reed pipe was measured using a laser 
vibrometer (Polytec OFV302 sensor head, OFV 3000 controller; Ono Sokki CF-360 Portable 
Dual Channel FFT Analyzer) at the Department of Physics at the Northern Illinois University, 
according to the method of Rossing et al. (1998). For all remaining measurements, the sound 
pressure of the pipe was recorded digitally on the intonation bank at the Klais organ workshop 
in Bonn using a microphone that was placed 50 cm above the outlet of the resonator. 
 

 
Fig. 1: Fundamental frequency of the free reed organ pipes in dependance of the resonator 
length: '*': 50 mm/H2O, '•': 70 mm/H2O, '+': 90 mm/H2O (all with cylindrical resonators); '∆': 70 
mm/H2O, conical resonator.  
 
Results 
 
Fig. 1 shows the dependance of the fundamental frequency of the pipe on the length of the 
resonator. As already mentioned by Töpfer/Allihn (1888) and Ellerhorst (1936), the fundamental 
frequency of the cylindrical pipe drops with increasing resonator length to a certain point, at 
which the pipe stops to sound (cylindrical pipes: 49-50 cm, 50 mm/H2O; 50-51 cm, 70 mm/H2O; 
no dead point, 90 mm/H2O). After this dead point, the fundamental frequency jumps back to 
approximately the resonance frequency of the reed. The wind pressure had no noticeable effect 
on the frequency of the pipe. However, the range, in which the pipe does not sound, could be 
decreased by increasing the wind pressure. The conical resonator had a different effect on the 
pipe than the cylindrical one. Here, the fundamental frequency was less affected by the 
increase of the resonator length and the pipe only stopped to sound at a resonator length of 65 
cm. 
 
3. MODEL STRUCTURE 
 
The proposed model is based on the free reed model of Tarnopolsky et al. (2000). The 
advantage of this model is that it simulates quantitative physical parameters. For the simulation 
of free reed organ pipes, the model had to be modified in two ways. Firstly, it had to be coupled 
to a resonator, which was not applied in the work of Tarnopolsky et al. (2000). Secondly, the 
free reed had to be turned into an inward striking type. In inward striking pipes, the wind 
pressure in the air reservoir creates a force that causes the reed to move into the direction of 
the air reservoir in the first place. In outward striking pipes�the type which is found in Asian 



mouth organs as simulated by Tarnopolsky et al.�on the other hand the reed moves into the 
opposite direction at their first move.  
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model parameters: 
x : reed displacement   pL : radiated sound pressure 
pD  : pressure difference p I-pO HUp : transfer function airflow/pressure 
F : force onto the reed  HxA : transfer function displacement/reed area 
U : air flow    HpF : transfer function pressure/force 
U0 : air flow into the boot  HL : transfer function resonator delay line 
A : area of reed opening  R0 : reflectance resonator opening at reed 
pI : air pressure in the boot  RL : reflectance resonator opening at outlet 
pO : air pressure in the resonator z-m : delay line 
 
Fig. 1: Model structure 
 
In Fig. 1, the basic structure of the model, the physical parameters and their interactions are 
shown. The movement of the reed x is simulated in a mechanical oscillator circuit as a damped 
mass-spring system. The pressure difference pD between air reservoir and resonator at the reed 
creates a force F on the reed, which is simulated according to the Bernoulli force. The reed acts 
principally as a valve and its movement controls the air flow U through the pipe by gradually 
opening and closing. The value U greatly depends on the area of the reed A. Both the inner air 
pressure (sound pressure within the boot) pI and the outer air pressure (sound pressure in the 
resonator at the end of the reed) pO are dynamical parameters and therefore also the pressure 
difference pD. The pressure in the boot pI varies greatly with the volume of the boot, the outer 
pressure pO with the dimensions of the resonator. The three main equations that have to be 
solved are:  
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In the calculation the equations are discretized and solved iteratively. The area of the reed 
opening A was estimated according to the equations 2 and 5 in Tarnopolsky et al. (2000). The 
physical parameters were chosen as follows: 
 
resonance frequency of the reed, ù:  264 Hz 
sharpness of resonance of the reed Q:  50 
reed width, W:     6.6 mm 
reed length, L:    22.4 mm 
reed thickness:    1,5 mm 
reed material:    brass (ñ=8580 kg/m3) 
air flow into the boot, U0:   0.005 m3/s 
volume of the boot, V:   0.3 liter 
flow-contraction coefficient, C  0.61 



 
4. SIMULATION OF THE RESONATOR 
 
The resonator is simulated using a digital waveguide model (Smith, 1998). It is assumed that a 
forward and a backward propagating wave exist. A delay line is used to model each. The 
solution for the whole resonator can be obtained by the addition of the values of all 
corresponding delay elements. Losses in the resonator are calculated either at the beginning or 
the end of the delay line z-m. The reflectances R0 and RA at both ends of the resonator had to be 
estimated to be able to simulate different resonator shapes. The reflectance at the open end of 
the resonator was calculated using the solution of Levine and Schwinger (1948) for the radiation 
impedance of open resonators. The diameters of the resonators with variable length l were 
chosen for the types: cylindrical, conical I and conical II as follows: 
 

φ (reed)  φ (bell)  
cylindrical 4.5 cm  4.5 cm  
conical I 3.2 cm  6 cm 
conical II 3.2 cm   (12.9+l) 0.064 cm 
 

 
Fig 2.: Reed frequency (white lines) of the model at different resonator length (top: cylindrical; 
center: conical I; bottom: conical II). The resonance frequencies of the resonators are shown in 
the background (light gray). 
 
5. MODELING RESULTS 
 
Fig. 2 shows the fundamental frequency of the reed as a function of the resonator length l for 
three different resonator shapes (cylindrical, conical I with constant conical angle, conical II with 
constant diameters at both ends). The gray curves show the resonance frequencies of the 
resonators. The frequency of the reed is affected most if it is in the range of a resonator 
frequency as it was proposed by the solutions of Weber (1828) and Helmholtz (1865). 
 
 
 
 



 
 
 
The influence of the cylindrical resonator (φ=4.5) on the fundamental frequency of the pipe is 
larger than the influence of the conical resonator. This was already observed for a real organ 
pipe (Fig. 1). However, the influence is not only determined by the shape of the resonator, but 
also by its diameter, and in the simulation the influence of the conical resonator I on the reed 
frequency was larger than the influence of the conical resonator II. 
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Fig. 3: Spectrograms for three different simulated physical parameters (top: pO, the sound-
pressure amplitude in the resonator at the reed; center: pI, the sound-pressure amplitude in the 
boot at the reed; bottom: x, the amplitude of the reed displacement). 
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Fig. 4: Onsets simulated for different resonator lengths for a cylindrical resonator.  
 
Fig. 3 shows the spectrograms for three different physical parameters (top: pO, the sound-
pressure amplitude in the resonator at the reed; center: pI, the sound-pressure amplitude in the 
boot at the reed; bottom: x, the amplitude of the reed displacement). In each of the three 
figures, the resonance frequency of the reed and the resonator are clearly visible. In contrast to 
the real pipe, a strong decrease of the reed amplitude in those cases where the frequency is 
significantly smaller than the reed resonance frequency is not observed in the model simulation. 
It is aimed to improve the model in the future to show this effect. However, it can be observed 
that pI increases in those cases where the reed frequency is near its resonance frequency,while 
pA increases in those cases where the reed frequency is determined by a resonance frequency 
of the resonator. 
 
Also concerning the onset oscillation some typical characteristics of the free reed organ pipe 
could be simulated. The oscillation can be modified through the resonator in a similar way as it 
was observed in the experiment. The onsets of the reed displacement for four different 
cylindrical-resonator lengths (Ö=4.5) are shown in Fig. 4. As it was already observed for real 
pipes, the onset slope turns out to be more regular, if the resonator is set to the right length 
(here from 19 cm to 34 cm). Moreover, the onset time is increased if the fundamental frequency 
drops significantly, when the resonator length is increased (here 40 cm). After the fundamental 
frequency of the reed switches back to its resonance frequency, the onset is irregular for the 
first few centimeters. 
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