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ABSTRACT 
A time-domain numerical simulation of a guitar is presented. The model includes the transverse 
motion of strings excited by a force pulse, the flexural motion of the soundboard and the 
acoustic equations of both the external field and cavity. A specific variational formulation is used 
for solving the Kirchhoff-Love’s dynamic plate problem for an anisotropic inhomogeneous 
material with free boundary at the soundhole and clamped boundaries along the ribs. In 
addition, a fictitious domain method is used for solving the fluid-structure interaction. 
 
 
 
INTRODUCTION 
The scope of the paper is the simulation of the sound pressure field radiated by a guitar in the 
time domain. Guitar sounds, and guitar music, are essentially made of transients. Therefore, we 
wish to simulate transient sound field for a better understanding of the time-varying 
vibroacoustical phenomena involved in a guitar. The method consists in the modeling of the 
vibratory and acoustical phenomena from the initial pluck to the 3-D radiation. The main 
features of the continuous model are the following: an idealized plucking force is acting on a 1-D 
damped string model. The motion of the string is assumed to be perpendicular to the top plate. 
The top plate is modeled as an orthotropic inhomogeneous damped Kirchhoff-Love plate, with a 
soundhole, and clamped at the boundaries. The other parts of the guitar (back, neck, sides,…) 
are assumed to be perfectly rigid.The plate radiates both inside the cavity and in the external 
free field. The cavity communicates with the external field through the hole. 
 
 
The spatial part of the coupled partial differential equations which compose the model is solved 
by the finite element method. This method is based on a variational formulation of the problem. 
In this procedure we introduce, in particular, the pressure jump λ across the boundary of the 
instrument, so that it allows the use of a regular mesh for the approximation of the acoustic field, 
and leads in turn to an efficient numerical scheme in terms of computing time and accuracy. A 
standard numerical scheme is used for the string equation. The plate equation is solved by 
modal reconstruction, where the eigenmodes of the soundboard are first calculated by a finite 
element method. A modal truncation is made, according to the usual spectral content of real 
instruments. Finite differences in time are used for the string and the acoustic field, whereas 



exact resolution in time is used for the plate equation. A property of discrete energy decay 
ensures the stability of this hybrid time resolution.  
 
 
The modeling of the sound field shows significant new aspects. First, in contrast to previous 
works on the guitar which use mostly a frequency stationary representation, the time-domain 
approach yields here the evolution of sound pressure with time inside and outside the 
instrument. This evolution is of great help for a better understanding of the complexity of sound 
waves which reach the ears of a listener in a room. It allows, in particular, to reconsider the 
definition of directivity and efficiency of the instrument, by taking into account the temporal 
evolution of such quantities. Secondly, there is no discontinuity here between interior and 
external sound field: the same equations apply to the complete sound field. This is again a 
major difference with almost all previous works on the guitar, where the cavity is taken into 
account in terms of Helmholtz resonance and air eigenmodes, and where the reaction of the 
sound field on the top plate is either neglected or approximated. Traditionnaly, the top plate 
properties are conveniently summarized by the admittance of particular selected points at the 
bridge, since that part of the instrument is critical in terms of energy transfer between strings 
and plate. Therefore, our model has been evaluated by the computation of such admittances, 
among other criteria. 
 
 
With regard to previous work on guitars, one can summarize the originality of the present work 
as follows: It is an alternative to the Boundary Element Method, developed by Richardson et al. 
[3], and to the spatial Fourier method developed by A. Le Pichon et al. [6]. The results of the 
vibratory part can be well compared to the results obtained by Elejabarrieta et al., although the 
present model of the box is highly simplified [8]. As far as the numerical technique is concerned, 
the present modeling is a direct extension to plates of the timpani model developed by Rhaouti 
et al. [9]. The modeling of the guitar top plate makes also use of results obtained by Chaigne 
and Lambourg [4], especially with regard to the damping. The present modeling of the pluck is 
oversimplified compared to the work by Pavlidou [1] which could be incorporated in the model in 
the future. The modeling of the string uses results obtained on nylon strings by Chaigne [2]. 
Finally, both the string-plate and plate-cavity coupling confirm and extend previous results 
obtained by Lambourg et al [5]. 
 
 
 
PRESENTATION OF THE MODEL 
For the sake of simplicity, the motion of the string is assumed to be linear and perpendicular to 
the top plate and excited by an imposed force pulse (see Equations (1)-(2) and Figure 1). The 
string is rigidly fixed at the nut and the displacement of the string at the bridge is given by the 
average displacement of the bridge, which is assumed to be a rigid solid (3). The string is 
homogeneous with linear density ρs and stretched with uniform tension T. The transverse 
equation of motion also includes fluid damping Rfc and viscoelastic damping β. The stiffness of 
the string is neglected.  
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Left - Figure 1: Idealized plucking force pulse.  Right – Figure 2: Geometry of the guitar. 
Symbol ω represents Sp, the surface domain of the top_plate.  

 
The transverse displacement up of the top-plate (also called soundboard) is governed by the 
Kirchhoff-Love model for flexural vibrations (4). The material (wood) is assumed to be 
orthotropic. In Equation (4), ρp is the density, δ is the thickness, C is the elasticity tensor, η is a 
viscoelastic coefficient, Rfp is a fluid damping coefficient. A global law of damping versus 
frequency can be derived if η and Rfp are kept constant. However, due to numerical reasons, a 
modal approach has been used, where the damping factor can be adjusted for each mode of 
the plate, which yields more flexibility for defining the decay times (see the next section). On the 
right-hand side of Eq. (4), Fc(t) G is the force density imparted by the string at the bridge and [p] 
is the pressure jump across the soundboard. The geometry of the top-plate corresponds to the 
one of a standard classical guitar, including the shape, size and position of the soundhole. The 
bracing and the bridge are modeled by local inhomogeneities in thickness, stiffness and/or 
density. The other parts of the guitar body are assumed to be rigid. Due to the flexibility of the 
model, some of these simplifying assumptions could be easily modified, if necessary. The top 
plate is assumed to be clamped at its external boundaries γo (5) and free along the edge of the 
soundhole γl (6). 
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The acoustic pressure p and velocity Va are governed by the well-known continuity and Euler 
equations, in the linear case (7). Keeping both variables have several advantages. From a 
numerical point of view, it allows to work with first-order partial differential equations. From a 
physical point of view, it allows to compute energetic quantities such as sound intensity and 
sound power, which are essential for characterizing the instrument. The damping of the acoustic 
wave has been neglected. This assumption should be probably reconsidered in the future in 
order to account for the magnitude of the sound pressure near resonances of the cavity. 
Equation (8) yields the continuity of the normal velocity at the top-plate. The acoustic velocity is 
set to zero on the sides and on the back plate (9). The diffraction of the acoustic wave by the 
neck and head are neglected. The computation of the sound field is made in a small anechoic 
rectangular box. Absorbing boundary conditions are imposed on the walls [10].  
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NUMERICAL FORMULATION 
The proposed modeling of the guitar couples thus a set of string equations, plate equations and 
acoustic field equations. In order to take into account the complex geometry and the particular 
boundary conditions, we use the finite element method for the space discretization, which is 
more adapted to such cases than the finite difference method. The first step of the numerical 
resolution is thus to rewrite the complete problem into a variational formulation. In addition, this 
approach is a convenient way to obtain a property of discrete energy decay of the final 
numerical scheme, which is aimed at ensuring its stability.  
 
One of the main difficulties results from the size of the problem. It is a three-dimensional 
problem in a domain of infinite size and with a complex geometry. The most efficient method 
would be to use use a regular mesh for the approximation of the acoustic field, which in fact 
leads to a finite difference method. However, this choice gives a bad approximation of the 
shape of the instrument and spurious diffractions appear on this artificial boundary. Another 
possibility is to use a tetrahedric mesh which fits the geometry of the guitar with a better 
approximation, but this method is expensive, both in time and memory. Finally, another 
alternative, which has been introduced by Rhaouti et al. for the numerical modeling of a 
kettledrum, is to use a fictitious domain method [9]. This method preserves the efficiency of the 
finite difference method and approximates correctly the shape of the guitar. One introduces λ = 
[p] the pressure jump across the boundary of the instrument as new variable, and writes a 
variational formulation in which the instrument appears only through the Lagrange multiplier λ, 
so that it allows the use of a regular mesh for the approximation of the acoustic field. For the 
approximation of λ, we have to mesh the surface of the instrument, which is relatively easy. The 
price to pay is the inversion of a symmetric matrix of the size of the Lagrange multiplier at each 
time step. Thus, the scheme is not explicit.  
 
Given a regular mesh of the string, made of small segments, the approximation of the unknown 
us is determined by its values at each node of the mesh (P1 continuous finite elements). Given a 
triangular mesh of the top-plate surface Sp, the approximation of the unknown up is determined 
by its values at the vertex and the gravity center of each triangle, and its values at the middle of 
each edge (P2 alike-continuous finite element of order 2, see [11]). This particular choice 
reduces the numerical dispersion effects and leads to a better approximation of the 
eigenfrequencies of the soundboard. A triangular mesh is given on Γ (see Fig. 3), which 
coincides with the triangular mesh on Sp, in order to facilitate the computations. The Lagrange 
multiplier λ is determined by its values at the vertex of each triangle (P1 continuous finite 
element). To simulate the free space, the actual computations are restricted to a box Ω of finite 
size. Given a regular mesh of Ω, made of small cubes, the approximation of p is determined by 
its values at the middle of each cube (P0 discontinuous finite element). The approximation of the 
velocity Va is determined by its values of its normal component across each face of the cubes 
(Raviart-Thomas finite element). For the time discretization, a classical centered finite difference 
scheme is used for the string and for the acoustic field. It appears that for both precision and 
efficiency reasons it is better to solve the plate equation exactly in time. Thus, the plate equation 
is resolved by modal reconstruction. The modes are first determined by the means of the finite 
element method. The crucial point of this particular time discretization, which couples two 
methods which are radically different, is to ensure the stability of the obtained scheme. As 
announced, this is obtained by an energy technique which is based on the variational 
formulation of the model.  
 

 
 

Figure 3: Meshes of string, top-plate, pressure jump and acoustic field. 



RESULTS 
For all numerical experiments, typical parameters measured on standard classical guitars were 
used. The purpose is not to reproduce one particular guitar but rather to evaluate the 
performance of model and method. Figure 4 shows two examples of admittance at a particular 
selected point on the bridge. Comparisons are made between top-plate only and the complete 
guitar with open strings. These results compare well with experimental results on real 
instruments. In our model, it is possible to let the plate vibrate in vacuo which, in turn, yields the 
comparison between material and radiation damping. The influence of position and properties of 
bracing and bridge on the produced sound was also investigated. It has been observed that the 
ear is very sensitive to the fine tuning of string and plate damping, which confirms the judgment 
of players. By varying the geometry of soundhole and cavity, it has been possible to investigate 
the influence of air modes on the temporal evolution of the sound. In particular, it has been 
observed that the tone envelope is significantly affected if some top-plate modes are strongly 
coupled to air modes. Figure 5 shows the evolution of directivity (rms sound pressure in dB) with 
time for a pluck on the open E (or 6th) string. The time interval between consecutive pictures 
(from left to right and from top to bottom) is equal to 1.5 ms. In contrast to usual directivity 
patterns, which are drawn for a stationary field, these pictures give new insights with regard to 
the radiation properties of the instrument. Finally, Figure 6 yields the sound pressure field (linear 
scale in Pa) for a pluck on the open E (or 1st) string. The time interval between consecutive 
pictures is 0.72 ms. Virtual recordings were made of the sound pressure at various positions 
around the guitar which yield different tone qualities.  
 

  
Figure 4. Admittance curves. Left: complete guitar. Right: top plate only. 

 

       
 

       
 

 
Figure 5. Evolution of guitar directivity with time (dB-scale). From left to right and from top to 

bottom.  



     

 
Figure 6. Evolution of sound pressure with time. From left to right. Linear scale (in Pa). 

 
CONCLUSION 
The representation of the orthotropic damped top-plate with bracing, coupled to cavity and 
strings allows a fair reproduction of eigenfrequencies, decay times and magnitudes of the 
partials observed in real guitar tones. The other results take benefit from the computation of the 
time history of the total acoustic free field inside and outside the instrument. The prime interest 
is, naturally, to synthesize realistic guitar sounds. Our technique allows to compute the evolution 
in time of quantities such as sound intensity, sound power, energy transfer between cavity and 
free field, directivity index and radiation efficiency. It is expected that the averaging of such 
quantities not only in frequencies, but also in time and spatial domain will be of particular 
interest with regard to makers, players and listener. The main novel point of the method is that 
complex geometries of a fluid-structure interaction problem can be tackled, by means of the 
fictitious domain method. In addition, the use of well-posed problems, based on energy 
estimation, guarantees the stability of the numerical schemes. The limitations of the methods 
are the following: first, the constraints due to the spatial mesh are such that the possibilities for 
modifying the bracing of the top plate are limited. Secondly, the string is assumed to vibrate in a 
plane, which makes it impossible to account for the double decay observed in real guitar 
sounds. Finally, air damping should be added in order to better account for the Q-factor of the 
Helmholtz resonance, and the string-finger interaction could be substantially improved. Other 
modifications, such as taking the motion of the back plate into account, does not bear any 
substantial difficulty. 
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