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ABSTRACT 
 
Experimental determination of the acoustic impedance of tubular objects using a measurement 
duct with an array of microphones in its wall is considered. A method is proposed in which the 
influence of the microphone transfer-functions and the discontinuities in the measurement duct 
are accounted for via a series of calibration measurements with closed tubes. The effects of 
varying the number of microphones and calibration tubes is studied. Theoretical results show 
that uniform spacing of both the microphones and calibration tube lengths yields the smallest 
error within the effective measurement frequency range.  
 
 
INTRODUCTION 
 
Measurement of the acoustic impedance of tubular objects is often carried out using the 
capillary method (see for example [1]). However, this method is relatively sensitive to 
background noise, and usually gives accurate results only at frequencies up to about 5 kHz. For 
measurement at higher frequencies, an alternative method is required. An essential requirement 
of such a method is that the effects of non-propagating modes at the microphone positions, 
which are typically influential at higher frequencies, must be accounted for. 
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Figure 1. Schematic view of the measurement set-up. The ratio of the reflected and the incident wave at 
the reference plane is the reflectance of the object under study. 
 
The present study is aimed at determination of the acoustic impedance of tubular objects of 
circular cross-section at frequencies up to 20 kHz. The approach taken here is to employ a 
measurement duct with an array of microphones fitted in its wall, as depicted in figure 1. This 
approach has been used in previous research for the experimental determination of in-duct 
acoustic properties [2]. The “multiple-microphone method” used in [2] relies on the assumption 
that no non-propagating modes are excited in the measurement duct at the microphone 
positions; the effects of the microphone transfer-functions are accounted for by calibrating the 
microphones. In theory, one can avoid the excitation of non-propagating modes by mounting the 
microphones perfectly flushed with the wall, but in practice, it is extremely difficult to create such 



“discontinuity-free” mountings. However, it is in principle possible to include the effects of the 
non-propagating modes in the calibration procedure. Such an approach has been taken by 
Gibiat and Laloë [3] for the measurement of woodwind instrument bores, using a measurement 
duct with two microphones, and performing three calibrations with tubular objects of known 
impedance in order to fine-tune the experimental procedure. In this paper, we propose a method 
in which such a calibration procedure is used with the multiple-microphone method. 
 
 
DEVELOPMENT OF THE MULTIPLE-MICROPHONE MULTIPLE-CALIBRATION METHOD 
 
Theory of Impedance Determination with N microphones 
 
Consider the measurement set-up as depicted in Figure 1. At one end of the duct, the air 
column is excited with a sinusoidal signal, and the other end is passively terminated. The 
termination load at the reference plane is the impedance of the object under study. Under the 
assumption of linear propagation of only a single mode in the measurement duct, the 
microphone signals may be expressed as: 
 

−+ += pβpαs nnn ,     (1) 
 
where  and  are respectively the incident and reflected waves at the reference plane, and 

 and  are coefficients that depend on the microphone transfer-functions, and on the 
effects of the non-propagating modes that are excited at the microphone positions. If we neglect 
the higher-mode effects, and assume that each microphone is pre-calibrated so that the signal 

 is identical to the total acoustic pressure on the axis at position , the following 
approximations are found: 
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where Γ  is the propagation constant for waves travelling in the measurement duct. The object 
impedance can be determined from the microphone signals as follows: using equation (1), and 
by assembling all microphone signals , we obtain the linear matrix equation ns
 

bpA = ,      (3) 
 
where 
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For 2>N , this is an over-determined matrix equation. In that case, the “best approximate 
solution” is: 

( ) b AAAp hh 1 −
= ,     (5) 

 
which can be computed using Cramer’s rule [2]. The reflectance of the object under study is 
determined from the solution-vector p as +−= ppR . When no non-propagating modes are 
excited at the reference plane, the input impedance is then computed as )1()1(0 RRZ −+Z = , 
where Z is the characteristic impedance. Because we only need to know the ratio of the 0



elements of the solution-vector, we may use the first microphone as a reference microphone, 
and replace the variables in equation (3) with: 
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It is advantageous to use this alternative arrangement because (1) it is easier to measure 
consistent values of the ratio of two measured pressures than an exact pressure, and (2) we 
now have one unknown coefficient less. 

 
Figure 2: Singularity factors of matrix A, for different measurement set-ups with uniform microphone 
spacing. N is the number of microphones. 
 
As explained in [2], the sensitivity of this method to measurement errors may be expressed with 
the singularity factor (SF) of matrix A, defined as 
 

∑ −=
j

jSF 2Λ ,      (7) 

 
where  are the singular values of the matrix A. Using the approximations in equations (2), it 
can be shown that the widest frequency range with low SF values is obtained with uniform 
spacing of the microphones [2]. Such an equidistant arrangement of the microphones results in 
measurable frequencies that lie between 0 and , where 

jΛ

crf )2( dccrf =  is the critical frequency, 
and d is the microphone separation distance. Figure 2 shows the values of SF for different 
numbers of microphones. An increase of the effective frequency range and a decrease of the 
SF can be observed when increasing the number of microphones. 

 
 
Calibration 
 
In general, the influence of non-propagating modes increases with frequency. Hence for large-
bandwidth measurements, the use of the approximations in equations (2) might lead to 
significant errors. A possible strategy to avoid this is to determine the coefficients via calibration. 
This can be achieved by measuring the microphone signals for a number of known reflectances. 



Using equation (1), it can be found that the microphone signal ratio measured with known 

reflectance  is 
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By using M different known reflectances, and assembling the resulting )1( −× NM  microphone 
signal ratios, we can obtain the matrix equation 
 

ygB = ,      (9) 
 
where 
 

 B , (10)  
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where  are elements of matrix . Equation (9) can be solved in the same manner as 

equation (3). Using equations (2), we can calculate approximate values for , and compute 
an approximation of the SF of the calibration matrix B. This theoretical SF value represents a 
predicted measure of the sensitivity of the calibration procedure to measurement errors. We 
note the that the exact SF value can only be computed after actually measuring all the 
microphone signals; the theoretical SF is intended only as a tool for designing a suitable 
calibration procedure.  
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Closed cylindrical tubes are suitable as calibration objects, because their reflectances are 
known from theory. Computations of the SF of B have indicated that the “best spacing” is 
obtained when the length of the tubes are integer multiples of d. Therefore, the length of tube m 
in a series of M closed tubes was chosen such that its reflectance is  
 

[ ]dmR m )1(Γ2exp)( −−= .     (11) 
 
Note the corresponds to closing of the measurement duct at the reference plane. Figure 
(3) shows the SF for different combinations of N and M, as computed from the singular values of 
B. It can be observed that (1) the effective frequency range increases with M, and (2) the SF 
decreases with M but increases with N. 
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Figure 3: Theoretical singularity factor of the calibration matrix, for different measurement set-ups with 
uniformly spaced microphones and calibration tube lengths. N is the number of microphones, and M is the 
number of calibration tubes. 
 
 
PRELIMINARY RESULTS WITH TWO MICROPHONES AND THREE CALIBRATIONS 
 
The first experimental results were obtained using the simplest possible case, using 

. The method is then equivalent to the “two-microphone three-calibration method” 
presented in [3]. The measurement duct that was used is 1 meter in length and has a 9.1 mm 
diameter. The microphone distance was chosen 

32 == , MN

37=d mm, thus the critical frequency is 4.68 
kHz.  
 
As an alternative to a closed tube, one may use a calibration tube that is effectively anechoic; 
the input impedance of such a tube is simply its characteristic impedance, although higher 
modes need be taken into account in cases where there is large discontinuity at the reference 
plane. In order to determine a suitable calibration procedure, the theoretical SF of the calibration 
matrix was computed for three different combinations: (1) three closed tubes, (2) two closed 
tubes and an anechoic tube (of the same cross-section as the measurement duct), and (3) one 
closed tube and two anechoic tubes (of the same and of half cross-section). Figure 4 shows the 
theoretical SF of the calibration matrix for the various combinations. At most frequencies, using 
two anechoic tubes gives the largest singularity factors. Given that using three closed tubes 
results in a large SF at f , we chose to use one anechoic tube and 2 closed tubes in the 
experiments. Figure (5) compares the magnitude of the theoretical impedance of a cylindrical 
tube of the same cross-section as the measurement duct to the impedance determined via 
measurement. The measured curve that was obtained using calibration largely overlaps with the 
theoretical curve, and – as could be expected – exhibits discrepancies at frequencies close to 

. The result obtained without calibration (i.e. directly using equations (2)) exhibits 
significantly larger discrepancies, especially at frequencies above 4 kHz, which indicates that 
the calibration strongly improves the accuracy of the method. 
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Figure 4: Theoretical singularity factor of the calibration matrix with the two-microphone three-calibration 
method. N  and N  indicate the number of closed and anechoic tubes, respectively. t a

 
Figure 5: Input impedance of a cylindrical tube of length 257=L mm. The measured curve (with 
calibration) largely overlaps with the theoretical curve. 
 
 
CONCLUSIONS AND FUTURE RESEARCH 
 
The errors associated with the calibration of the multiple microphone method have been 
investigated. The sensitivity of the calibration to measurement errors was expressed in terms of 
the singularity factor of the calibration matrix. Theoretical results predict that the smallest 
singularity factors are obtained using a series of calibration tubes which have lengths that are 
multiples of the microphone separation distance, and that the calibration procedure is improved 
by increasing the number of calibration tubes. Preliminary measurement results indicate the 
usefulness of the calibration procedure in the case of using two microphones and three 
calibrations. Work is underway to assess the feasibility of the method for larger values of N and 
M. 
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