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ABSTRACT 
 
A numerical model of ultrasonic cavitation field is described. It is based on a phenomenological 
description of a cavitating fluid as a non linear fluid whose characteristics (sound speed, 
density) depend upon the bubble density. To obtain the constitutive relationship between bubble 
density and acoustic pressure, a real-time measurement method of the bubble density, relying 
upon the variation of the electrical resistance of the medium, is proposed. The finite element 
formulation of the model is derived and implemented in the ATILA code. Computational results 
on the cavitation field created by a cylindrical concentrator are presented. 
 
 
INTRODUCTION 
 
The development of industrial devices using physical and chemical processes assisted by 
ultrasonic cavitation is constrained by the limitation of existing modeling. This difficulty is due to 
the fact that processes involved are highly non linear and the reactions taking place in the fluid 
cannot be described by simple mathematical relations. More over, the overall efficiency of 
devices using cavitation is usually low and an oversizing cannot easily compensate for a bad 
design. Numerical modeling can provide the tools that would help to optimize the design of 
these devices. 
 
The development of these numerical models involves different scales: the reactor scale 
corresponding to the parameters (reactor geometry, transducer…) available to the designer, the 
bubble scale where most physical processes (vibration, rectified diffusion, coalescence, 
fragmentation, Bjerknes forces…) take place; the particle scale used to describe the cavitating 
fluid as a continuum. The microscopic non linear phenomena must be translated into a 
constitutive equation (at the particle scale) in order to be implemented in the numerical model. 
Existing numerical models [1-4] start from the study of the dynamical behavior of the single 
bubble. Strong hypotheses (linear vibration [2, 3], isolated bubbles [1-4], prescribed distribution 
of bubble sizes [1-4], no coalescence or fragmentation [1-4]) are then added. Finally, the Caflish 
model [5] is used to build up a constitutive equation of the cavitating fluid. Resulting equations 
are expressed in the time-domain and solved using finite element [1] or finite difference [2-4] 
methods. 
 
A different approach is presented here. Firstly, it is assumed that the cavitating fluid reaches a 
steady-state. Physical quantities are described by their average value at the working frequency. 



Secondly, bubbles at the particle level are represented by an additional macroscopic variable, 
the bubble density. Thirdly, a phenomenological law relating pressure to bubble density is 
assumed. This law takes into account, in steady-state, the overall balance between nucleation, 
bubble vibration, rectified diffusion, fragmentation and coalescence. 
 
 
1. MODEL 
 
1.1. Stationnarity 
 
The first hypothesis of the proposed model assumes the existence of a stationary state in the 
reactor. To verify this assumption, pressure measurements are performed in a probe reactor 
using a longitudinal horn-type transducer whose radiating surface is located at the free surface 
of a water tank. Successive pressure acquisitions of 0.1 s are made with a sampling frequency 
of 100 kHz. The frequency spectrum of each acquisition is evaluated by a Discrete Fourier 
Transform and then successive spectra are averaged. Figure 1 displays the influence of the 
number of averages on the frequency spectrum. After, 40 to 50 averages, the stochastic 
character of the pressure disappears and the average spectrum is obtained. Lines in the 
spectrum are associated to the fundamental frequency at 20.5 kHz, as well as higher harmonics 
and sub-harmonics resulting from non linear bubble vibration. When the pressure is monitored 
over a longer duration with an averaging over 40 acquisitions, the spectral amplitude at the 
fundamental frequency varies within 2 dB [6]. This result shows that the hypothesis of 
stationnarity used in the model is realistic. 
 

  

Figure 1: Effect of the number of averages on the 
spectrum of acoustic pressure in the cavitating 

liquid (arbitrary scale). 

Figure 2: 0δ  versus 1p  from [10]. Thick 

line : experiment, thin line : model. 
 
1.2. Conservative and state equations 
 
 The bubble density δ(r, t) is defined as the volume fraction of bubbles. In steady-state, 
the maximum value of δ is well-known as cavitation index [7, 8]. At the particle scale, the 
equations of the model are the conservation of mass 
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the conservation of momentum 
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and the state equation 
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ρ and ρ0 are respectively the density and the initial density, v is the particle velocity, p is the 
pressure, c0 is the speed of sound in the liquid and t is the time. Equations (1) to (3) are 
combined to obtain 
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The Ritz averaging method [9] applied to eq. (4) allows to obtain an approximate steady-state 
solution. The approximated values of pressure p~  and bubble density δ

~
 are written 
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where ω is the angular frequency, np  and nδ are the complex amplitudes of the spectral 
components of pressure and bubble density respectively. The Ritz averaging criterion states 
that the "best" approximate solution is obtained by canceling the integrals 

 0
sin

cos~~1~2

0 2

2

02

2

2
0

=


















∂

∂
+

∂

∂
−∆∫ dt

tmor

tm

tt

p

c
p

ωπ

ω
ωδ

ρ  (7) 

The computation of the integrals leads to a set of uncoupled equations on the complex 
amplitudes of the spectral components: 
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1.3. Phenomenological law 
 

A constitutive relationship between the different spectral components np  and mδ  (where m can 
be different from n) is required to close the model. A first evaluation is carried out from 
measurements made by V.A. Akulichev [10] on the axis of a cylindrical ring transducer driven at 
15.4 kHz. In this experiment, the change of volume measured by dilatometric method [7] 
(insertion of a capillary in the cavitation zone) is the amplitude of the "static" bubble density 0δ . 

The variation of 0δ  with 1p  is displayed in Figure 2. Three zones are shown: 
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As long as the pressure is lower than the cavitation threshold pt, there is no cavitation, and 
hence, the bubble density is set to zero. In the second zone where satt ppp ≤≤ 1 , the bubble 
density varies with the acoustic pressure. This is an “unsaturated cavitation” where 
fragmentation effects dominate because of the low concentration of bubbles. In this zone, the 
number of bubbles per unit volume increases as the acoustic pressure increases [10]. When 

satpp ≥1 , the bubble density reaches a maximum value of δsat. In this “saturated cavitation” 
zone, coalescence effects are predominant, resulting in a decrease of the number of bubbles 
per unit volume and an increase of the bubble size as pressure increases. In the real process, 
there is a continuous transition from unsaturated to saturated cavitation as the bubble density 
increases and the bubbles are getting less and less isolated. It can be noted that eq. (9) does 
not provide the relationship between the spectral components of pressure and bubble density 
needed in eq. (8). A new method for measuring spectral components of bubble density is 
described in section 3. In the following, only the components at the fundamental frequency are 
considered with the following relationship: 
 )( 111 pαδ =  , (10) 

where α1 is a complex function. After combining equations (8) and (10), the resulting equation is 
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According to the value of )( 11 pα , the local solution can be purely a propagating wave, a purely 
attenuated wave, or a propagating wave with attenuation 
 
1.4. Numerical model 
 
The weighted residual (Galerkin) method is applied to eq. (11) together with the classical finite 
element discretization scheme. The discretized set of equation is 
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where P and U are the vectors of the nodal values of pressure and prescribed displacement 
(transducer surface) respectively with 
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[ ]eN  and [ ]eB  are the interpolation and the space derivative interpolation elementary matrices 
respectively and e denotes the finite element. Eq. (12) is solved by a two-steps procedure. 
Firstly, the linear pressure field P0 is computed for a prescribed displacement U0 corresponding 
to the cavitation threshold 
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Then, an incremental resolution is performed using a tangent matrix method [11] 
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This formulation is implemented in the finite element code ATILA [12] which can take into 
account piezoelectricity, fluid-structure coupling and acoustic radiation problems. 
 
 
2. APPLICATION EXAMPLE: THE CYLINDRICAL CONCENTRATOR 
 
A piezoelectric ring acting as a cylindrical concentrator is considered. The inner radius of the 
ring is 8 cm and the excitation frequency is 15.4 kHz. Due to the symmetry of the geometry, only 
1° of the internal fluid cavity is meshed. The mesh is denser at the center of the cavity where 
cavitation is expected. In this zone, the wave velocity sharply decreases and the element length 
must be kept smaller than λ/4 (where λ is the wavelength). A displacement is prescribed at the 

inner radius of the ring. It is assumed that 1δ  and 1p  in equation (10) are related as 0δ  and 

1p  in equation (9) and that 1δ  and 1p  have the same phase. 
 
Figure 3 and 4 display the variation of acoustic pressure and bubble density versus radius for 
various prescribed displacement of the ring. Several effects are noted: i) the acoustic pressure 
saturates rapidly in the cavitation zone; ii) the size of the cavitation zone stays almost constant; 
iii) pressure nodes and antinodes are spatially shifted when the amplitude of displacement is 
increased. The computation is stopped when a second cavitation zone appears around r = 4 
cm, requiring a refinement of the mesh. 
 
 
3. MEASUREMENT OF THE BUBBLE DENSITY 
 
The principle of the method is to measure the variation of the fluid electrical impedance due to 
the bubbles vibration. From an electrical point of view, the bubbles can be seen as insulating 
spheres of variable radius if the electrochemical effects of cavi tation are neglected. The 



vibration of the bubbles modifies the current density lines and therefore affects the impedance 
(mainly resistive) between two point electrodes. 
 
The experimental device is presented in Fig. 5. The cavitation field is generated by a horn-type 
transducer at fBF = 20.5 kHz. The probe is driven at high frequency (fHF = 89 kHz) and small 
amplitude in order to avoid electrolytic and oxydo-reduction reactions. If R1 is much larger than 
the probe resistance at the primary of the transformer, the relative variation of voltage V2 is 
equal to the relative variation of the probe resistance. The real-time variation of the resistance is 
too small (typical relative variation of 10-3) to be directly visualized. However, as the voltage V2 
is a high frequency signal whose amplitude is modulated by the bubble vibration, lines 
associated to the bubble vibration are found in the frequency spectrum, even for small relative 
variation (up to 10-4). Fig. 6 displays the amplitude spectrum of V2 averaged over 40 acquisitions 
and synchronized on the drive signal. Lines found at f = fHF – (n+1) fBF (n = 0 to 3) i.e. 68.5, 48, 
27.5 and 7 kHz and f = (n+1) fBF - fHF (n = 4 to 6) i.e. 13.5, 34 and 54.5 kHz can be attributed to 
fundamental and higher harmonic of the bubble density variation. Parasitic lines are found at 
f = (m+1) fBF (m = 0 to 3) i.e. 20.5, 41, 61.5, and 82 kHz (electromagnetic radiation from 
transducer), and at 38 and 76 kHz (electromagnetic radiation from other apparatus). Other lines 
have still to be analyzed. Similar data can be obtained for the phase spectrum of V2. From these 
amplitude and phase information, the average time-variation of the bubble density can be 
reconstituted. 
 

  
Figure 3: Variation of pressure amplitude along 

the radius for different prescribed displacements. 
Figure 4: Variation of bubble density along 

the radius for different prescribed 
displacements. 

 

 
Figure 5: Set-up for measurement of local variation of fluid electrical impedance 
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Figure 6:  frequency spectrum of |V2|. Full arrows: lines due to bubble density variation, 
number n is given; dashed arrow: parasitic lines due to direct electromagnetic coupling. 
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