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ABSTRACT. A numerical study of high-amplitude transient signals propagating in an absorbing, 
homogeneous fluid is presented. The work is motivated in many applications where high intensity 
waves, which can not be described by linear laws, are involved (biomedical research, high power 
ultrasonics, etc.). Differential equations are written in lagrangian coordinates, and the full nonlinear 
equation is solved by means of a finite difference algorithm. Calculations are performed exclusively 
in the time domain, giving all the harmonic amplitudes by only one resolution step, and allowing 
the analysis of the evolution of the waveform for any original signal: gaussian, rectangular pulses, 
periodic excitation, etc.  Numerical results are presented for waveform distortion and shock 
formation for plane transient and harmonic waves. Spatial and initial pulse shape dependences are 
specially analysed. 
 
 
INTRODUCTION 
This paper deals with a numerical study of high-amplitude acoustic signals propagating in an 
absorbing, homogeneous fluid. Many applications exist where high intensity waves, which can not 
be described by linear laws, are needed. In particular, the development of medical ultrasound as a 
therapy tool (hyperthermy, lithotripsy, etc.) involves high amplitudes and, thus, nonlinear 
propagation. In the other hand we observe an increase in the amplitudes of the ultrasonic fields 
applied in diagnostic in order to have greater penetration and greater resolution [1]. The theory 
accompanying this development can not be made anymore under the assumption of linear 
propagation. In this framework, the purpose was to develop a numerical method for studying the 
nonlinear propagation of plane waves by using the full nonlinear equation derived in lagrangian 
coordinates. Some authors have used eulerian coordinates and the “retarded time” variable 
associated with the propagation in the x+  direction: 0cxt −=τ , which allows them to reduce 

by one the order of the differential equation for wave motion [1,2]. In this paper we solve the full 
nonlinear differential equation written in lagragian coordinates by using natural spatial and time 
coordinates. This implies the need of imposing a non-reflecting boundary condition. The 
formulation is written in the time domain, allowing the analysis of the evolution of the waveform for 
any original signal: periodic excitation, gaussian, rectangular pulses, etc. In addition, all the 
harmonic components are obtained by only one resolution step, with the consequent save in 
computation time. 
 
The equations of the acoustical problem are presented in Section I. Section II presents the 
numerical algorithm. The numerical scheme is experimented and results are presented, validated 
and commented in Section III. The conclusions of the paper are finally given. 



  
 

 

 
 
I. FUNDAMENTAL EQUATIONS 
Nonlinear waves propagating in a homogeneous thermoviscous fluid are studied. The Tait-Kirkwood 
equation of state for isentropic fluids has been considered [1]. The one-dimensional full nonlinear 
wave equation written in lagrangian coordinates is considered [3]:  
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where p0 is the ambient pressure, ρ0 the initial state density, π and χ are characteristic constants 
of the fluid, u is the displacement, v is the kinematic shear viscosity, and b is the so-called 
viscosity number. t and x are, respectively, the time and one-dimensional spatial coordinates. 
No approximations have been made about the acoustic Mach number value or about the 
attenuation parameter, i.e., the only limitations on pressure amplitude in the model are those 
derived from the isentropic approximation [3]. However, since we consider the propagation of a 
(transient) wave within an unbounded domain, even in the case of very high acoustic Mach 
number, the isentropic property of the fluid can not be questioned.  

 
Boundary conditions 
 
We consider progressive plane waves and a 
source placed at 0=x . Then, the following 
boundary conditions are written: 
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where 0c  is the small-amplitudes value of the 

sound speed, L is the length of the domain 
considered in calculations. The “quasilinear” 
non-reflecting condition (2.b) will be tested by 
comparing the numerical results with 
analytical results obtained for an harmonic 
wave. )(tf is the source function, i.e., the 
excitation of the medium defined as a function 
of time. The method supports any source 

function. In this article some numerical experiments are made by considering different 
dependencies for )(tf : a continues wave and two gaussian pulses of different length.  
 
The fluid is assumed to be initially at complete rest: particle displacement and velocity are null at t 
= 0. The following initial conditions are then employed: 
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Heating 
 
It is well known that the absorption of sound leads to heat generation in the acoustic medium. 
Moreover, temperature is a very important parameter in applications, especially in medical 
applications. When dealing with very high amplitude waves the nonlinear attenuation is completely 
dominant (see Figure 1) and then the heating predicted by a linear theory is not correct anymore 
and it has to be calculated in the new nonlinear framework. We calculate the heating rate and the 
temperature increase by using the isentropic hypotheses [3] and the Fourier’s law, 
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Fig. 1. Comparison of the amplitude evolution 
at the fundamental frequency for a strongly 

nonlinear progresive wave 
( kHz20=f 1m06.2 −=α ) 
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where q is the heat-flux, θ  the absolute temperature, κ  is the coefficient of thermal conductivity, 

and µ  and Bµ  are the viscosity and bulk viscosity. No-additional hypotheses about the acoustic 
Mach number has been made. These 
equations are solved by using a 
conventional finite differences algorithm 
[4]. 
 
II. NUMERICAL FORMULATION 
 
In this section the numerical 
formulation developed for solving the 
acoustical problem is described. It is 
based on the finite-difference method 
[5] and has been included in the 
numerical code Snow-ac [3,8]. 
The numerical scheme is created by 
considering two dimensionless 
independent variables: X=x/λ and 
T=ωt, where λ is the wavelength of the 
signal and ω is its angular frequency, 
and an uniform discretization of the X-T 
space. The differential equations of the 
previous section are numerically 
treated as in reference [3,6]. 
Displacements are evaluated at every 
point of the discretized space. The 
method is implicit and conditionally 
convergent [3,6]. Boundary conditions 
(2) are taken into account at each 
time-step. A notable feature of the 
method is the linear structure of the 
system of equations obtained at each 
time-step for solving the nonlinear 
problem.  
 
The mechanical perturbations of the 
wave reach the wavelength number i at 
the period number i, and thus many 
values of the displacement are null. 
This phenomenon is taken into account 
in the algorithm. These null values are 

not evaluated. This fact generates an important saving of operations, storage and CPU time. For 
this purpose computations are first led on the perturbated zone during the first group of periods 
only, by considering the initial conditions. The number of periods of the group depends on the kind 
of pulsed excitation. The second phase computes the values of the displacement on the perturbed 
zone during the second group of periods, by considering a continuity condition with the first part. 
And as so on up to the last group of periods of the problem. 
 
At each time-step of the j-th period the system of equations is solved by means of an economic 
and fast method based on a LU decomposition valid for the whole j-th period [7]. 
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Fig. 2. Comparison with analytic results for 
kHz20=f , 5 periods, 5 wavelengths, and 

1m06.2 −=α  
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Fig. 3. Excitations signals 



  
 

 

Pressure and heating rate are calculated from the displacement values by means of classic finite-
difference schemes.  
 
III. VALIDATION AND RESULTS 
 
A validation of the numerical method is presented by comparing with analytical results referred to 
a quasi-linear case. The analytical model is based in a perturbation technique in the frequency 
domain. We assume a solution consisting in the addition of two terms in the form u u ul= + 2 , 

20 pppp l +=−  and with u ul2 <<  and lpp <<2 , where ul  ( )lp  represents the first-order 

solution of Eq. (1) and u2  ( )2p  the second-order correction. The additional assumption of small 
attenuation is made and dissipation is taken into account by using a complex wave number. With 
these approximations, the following analytical solution is obtained: 
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where αjkk −= 0 , and 
0

0 c
k

ω= . In Figure 2 analytical and numerical results are compared. A 

harmonic source of amplitude m250 µ=u  is considered at the frequency Hz20000=f . 

m/s3400 =c , 4.1=γ  and 3
0 kg/m29.1=ρ . We consider 1m06.2 −=α . 01.0=h  is 

employed. The numerical sound pressure distribution of the first and second harmonics at the last 
instant of the study is shown to coincide with the analytical one. The harmonic decomposition of 
the numerical signal is obtained by means of a FFT. These good results validate the numerical 
method presented. 
 
Some results are now presented referring to the propagation of transient signals. The source 

function is written as ( ) ( )[ ] ( )teutf ttxb ωcos
2

0
0

−−= . We have chosen two short signals: a very 

short pulse ( )6105×=Bx and a gaussian pulse ( )610=Bx . The evolutions of the waveshapes 
and shock formation are studied and the importance of the initial waveshape analysed. In all cases 
we have considered a fluid with acoustic properties similar to tissues of the body (with the 
exceptions of lung, bone, and fat): m/s15000 =c , 2.6=γ  and 3

0 kg/m1000=ρ ,  
1m11 −=α  [1]. We consider a frequency of 1 MHz, quite usual in medical applications. In Figure 

3 we see the considered displacement at the piston in normalized units. The displacement 
amplitude at the piston is mu µ5.10 = , which means an initial pressure amplitude of the order of 

15 MPa, quite typical in medical applications, both diagnostics (in focalized region) and therapy. 
In Figure 4 we show the evolution of the waveshape for the two considered cases. We observe that 
the strong harmonic distortion occurs at the first wavelengths from the source in both cases. 
When distance to the source increases, the central frequency of the short gaussian pulse 
decreases. At 7.2 cm from the source the pulse has an amplitude of the order of 27% of its initial 
value and its frequency is about three times less than the original; no much harmonic distortion 
affects this state of the pulse. Thus, for this type of excitation signal, the main effect involved is 
the nonlinear attenuation associated with the harmonic distortion in a nonlinear medium with a 
dispersion relation of the type ω2 for the absorption. When dealing with a wider gaussian pulse, the 
strong distortion affects again at the first wavelengths from the source, at 7.2 cm from the source 
the amplitude of the wave is of the order of 32% of its original amplitude. 
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Fig. 4. Waveshapes and Fourier decomposition of the two analyzed signals at different distances 

from the source 
 



  
 

 

The central frequency of the fundamental has decreased only in 12.5% in front of the 300% of the 
short pulse. This can be interpreted because the low frequencies, which are quite less attenuated, 
when the dispersion relation considered is ω2, are more present in the short pulse. Another 
important difference is the apparition for this kind of signals of the low frequency. This low 
frequency increases fast with the distance to the source, and corresponds to the self-
demodulation of the initial signal. In this case, this frequency is 0.22×f, being f the central 
frequency of the excitation, which corresponds to the modulation frequency of the initial pulse. In 

figure 5 we show the evolution of the 
amplitude at the fundamental and at 
the demodulation frequency with the 
distance.  

 
 
CONCLUSIONS 
An study of the nonlinear propagation 
of high amplitude waves has been 
presented. The analysis is based in a 
finite-difference algorithm which solves 
the full nonlinear wave equation written 
in Lagrangian coordinates. Bulk 
attenuation has been considered (a ω2 
dispersion relation) and no 
approximations have been made about 
the absorption parameter value. The 
algorithm works in the time domain. 
This means that the whole wave-shape 
is obtained by only one resolution. The 
algorithm has been validated by 
comparison to a “quasi-linear” 

analytical solution. The method has been applied to the analysis of the propagation of transient 
signals. We have shown the strong dependence of the observed nonlinear effects on the initial 
frequency content of the signal. The analysis of the results showed the importance of nonlinear 
effects when considered the propagation of relatively high amplitude transient signals.  
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Fig. 5. Pressure amplitude at the fundamental and at 

the demodulation frequency 
 


