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ABSTRACT 

 
The equations of motion of a curved tyre belt are derived for one-dimensional waves 
propagating around the belt and a standing wave across the belt. The effects of curvature, 
shear stiffness, rotary inertia, tension, rotational speed and air pressure are included. These are 
combined to give a sixth order wave equation, the solution of which gives three pairs of wave-
number as a function of frequency. The application of the boundary conditions at the contact 
leads to the input and transfer mobilities for both in-plane and out of plane excitation. Observed 
are: low frequency rigid-body modes, belt bending modes and in-plane ring modes.  
 
 
 
1.INTRODUCTION 

 
When a rotating tyre interacts with the road surface, the time varying deformations are 
transmitted causing noise interior and exterior to the vehicle. To calculate this interaction with 
the road and also to determine the resulting vibration of the tyre surface it is first necessary to 
make a dynamic model of the tyre.  The main exterior noise occurs between 500Hz and 
3000Hz, a region where there is little modal behaviour of the belt flexural waves. An infinite flat 
belt wave model that included tension, transverse shear, rotary inertia and bending was made 
for this region [1]. However a full tyre model should embrace the whole low frequency range to 
include the vehicle interior noise between 50Hz and 500Hz, and the quasi-static slip of road-tyre 
interaction.  
 
 
The objective here is therefore to extend the previous wave model to include: curvature, 
asymmetric belt and tyre rotation to the other parameters, and thus make a complete circular 
belt model. As the main effect of curvature is to couple transverse and longitudinal motion the 
response to both transverse and in-plane forces are obtained. The waves in the air cavity are  
neglected here, as they are only noticed  at the first cavity resonance. 
 
 
Using the equations for radial and circumferential equilibrium a sixth order wave equation is 
constructed. The solution is three pairs of roots or waves at each frequency. These waves can 



then be added to satisfy the chosen boundary conditions at the excitation zone. These 
boundary conditions can be displacements, rotations, forces or moments. Presented here are 
only the frequency response functions for radial and circumferential forces. 
 
 
 
2: EQUATIONS OF MOTION 
 
The tyre could be described as a curved, tensioned, Mindlin plate on distributed two-directional 
stiffness. Figure 1 shows a segment of length δs and width δz, in a tyre belt of radius a and 
width b, displaying the sign convention for positive directions, rotations, forces and moments.  
The belt is subjected to a net static pressure P which causes a static tension/length NS, NZ in 
the circumferencial and transverse directions s, z.. QS,  QZ are the shear forces/length. N is the 
total static and dynamic circumferencial force/width. MS,  MZ are the bending moments/length. 
The accompanying displacements are u,w,  in the circumferential and radial directions. θ 
describes the geometric position  and is related to the circumferential co-ordinate s as: s 
=aθ. The tyre rotates in the positive θ direction with angular velocity Ω. The belt is restrained 
either side by a side-wall of stiffnesses/ belt length of Ks , Kr , in the circumferential and radial 
directions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this section three groups of equations are presented: kinematic relationships, equilibrium of 
forces and moments, and the linking Hooke's Law relationships. It is also assumed that the 
averaged material properties of the cross-section are known, as reference will only be made to 
these single material values for the cross-section. The segment motion can be described by 
three variables; displacements u,w and the kinematic rotation Φ. For a Mindlin plate that can 
deform in both bending and shear, the slope at any position s in the s and z directions are 
respectively: 
 

                                             ,s s z z

w w

s z
β γ β γ

∂ ∂
= + = +

∂ ∂                                   (1a,b) 

                                                                   
where βs ,βz and γs ,γz are the slopes due to bending and shear respectively. The kinematic 
rotations Φs, ,Φz,   in the s and z direction, of the element seen in Figure 1, including that due to 
the circumferential displacement u, are therefore:  
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The total angle ϕ in the s direction is the sum of the geometric rotation θ and the kinematic 
rotation Φs. The small change in slope over the length δs is therefore: 
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The circumferencial strain εs and transverse strain εz are:  
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There are four equations of equilibrium: forces in the radial direction, forces in the 
circumferencial direction, and for moments in the s and z directions. The equilibrium of radial 
forces taken in line with the circumferencial shear force/width Qs. Substitution of the segment 
rotation in equation (2a) yields: 
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where P is the net static pressure. p(s,z) is the dynamic pressure due to the side-wall and 
external radial force. Nz is the static transverse tensile force/length, N is the total  static and 
dynamic circumferencial tensile force/width, Qz is the transverse shear force/width. µ  is the belt 
mass/area. The last term is the extra centrifugal force due to displacement w.  
 
By resolving forces in the s direction in line with the circumferencial force/width N  in Figure 2a, 
and substitution of  the segment rotation in equation (2a), gives: 
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where Ks  is the single side-wall circumferencial  stiffness/belt length. The tangential external 
stress is τ. . The second term from the left is the Coriolis force, which gives gyroscopic coupling 
between the axial and radial motion.   
 
The net moment, taken about the right hand end z axis of the segment is responsible only for 

the angular acceleration due to bending &&β s as seen in equation 7a. A similar relation holds for 
the z direction: 
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The three types of forces in equations 5-7 are assumed to be linearly related to the three 
deformation types in equations 1-4 by the various elastic moduli of the belt section. There are 
the following three groups of these Hookes Law relationships. 
 
 
 
 



The circumferential force/width N has a static component Ns and a dynamic component arising 
from the circumferential strain ε s : 
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where As is the belt axial stiffness/width. The static tensions Ns, Nz calculated in [2], are 
determined from the pressure, side-wall geometry and from resisting the centrifugal force µΩ2a. 
2φc is the angle subtended by the side-wall, φ1 is the angle the angle between side-wall 
and the ground. In the circumferencial and transverse directions the shear force/width Qs,  Qz is 
related to the shear strain by the belt shear stiffness/width Ss,Sz.: 
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The bending moment in the circumferencial and transverse directions can be written from [2] as 
equations 10. This concludes the component equations for the tyre belt. 
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Equations 1-10 are reduced in [2] to a single sixth order wave equation. The solution selected 
here is a harmonic solution for a wave travelling in the positive s direction with m transverse half 
wavelengths, of the form wmexp(-ikms), umexp(-ikms). The sixth order wave equation is obtained 
in the normalized wave-number zm=kma: 
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The normalized cross section properties of shear stiffness, tension, pressure, rotational 
stiffness, sidewall and section modal stiffness, and centrifugal force are: 
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The two normalised non-dimensional wave-numbers zL, zc are for the longitudinal wave  and the 
'rotational wave' [1], which could also be called the first asymmetric Lamb wave [3]. The wave-
numbers   are defined by: 
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The final term with the odd wavenumber orders is the Coriolis coupling, the ± is for the anti-
clockwise and clockwise waves respectively. This term may be significant in the contact patch.  
Figure 2a and 2b shows the modulus and phase of the wave-number for  the m=0 waves. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2a: Wavenumber Modulus 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2b: Wavenumber Phase 
 

The equation in zm
2  is solved at each frequency to give three pairs of roots p=1,2,3 for each 

transverse mode group m. The normalised wave-numbers are of the form zpm i.e. 

1 2 3, , ,m m mz z z± ± ± for the anti-clockwise and clockwise wave. Here the three selected wave-
numbers kpm will take the sign and form of the wave that exists in the anticlockwise direction. 
The roots are complex in general and the true roots or waves are those that decay in the anti-

clockwise direction and have the possibilities ( )r ik ik± − , where k r and ki are the real and  
imaginary wave-numbers. This wave can have three forms seen in Figures 2a,2b: 
1. k r >> ki ,  a propagating  or travelling wave with a small negative phase from the damping. 

At 100Hz the root 3 wave cuts on and becomes a travelling  bending-tension wave. 
2.  k i >> k r , the evanescent bending wave has a phase of -π/2 between 100Hz and 3kHz. 

3. r ik k≈  termed the 'complex wave', which always occurs in a pair r ik ik± − , e.g.root 2 and 
3 below  60Hz, form a rapidly decaying standing wave at the contact zone. 

 
 
 
3: TRANSFER FUNCTIONS 

 
The transfer functions may now be found as each response is a sum of six waves, the 
amplitude of which is found from the six boundary conditions. These are continuity of 
displacement, continuity of the slope due to bending, and the input force and moment. For a 
stationary wheel, and the same material data as Figure 2, the input and transfer radial line 
mobility is given in Figure 3 and the tangential line mobility in Figure 4. 
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Figure 3:  Input and Transfer Mobility for radial line excitation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Input and Transfer Mobility for tangential line excitation 
 
 

4: CONCLUSIONS 
 

A tyre model for the whole working range from 0-3kHz has been made using a wave approach. 
This can provide transfer functions in the normal and tangential directions and can 
accommodate  rotational effects such as centrifugal and Coriolis forces. 
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