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ABSTRACT  
 
This paper deals with the modelling of the horn effect created between the tire and the road 
surface. For perfectly reflecting conditions, existing models use the multipole synthesis 
associated to an image multipole source. This principle is here extended to address the 
condition of an acoustically absorbing road surface. In this paper, the 2D (cylindrical) and 3D 
(spherical) modelling are presented.  Results are expressed in terms of power amplifications. 
For both cases, a comparison with the perfectly rigid surface is given. 
 
 
 
INTRODUCTION 
 
Two main phenomena for tyre-road noise generation were identified a long time ago: tyre tread 
excitation, vibration and radiation due to the interaction with the road surface, compression and 
expansion of air near the contact area (air-pumping). The first phenomenon predominates in low 
and medium frequency ranges (below 1kHz), the second one in high frequency ranges (above 
1kHz). While air-pumping sources are concentrated near the horn apex, tire tread vibrations 
decay progressively when moving away from the contact area [1]. Whatever the origin of the 
source, it has been shown  that tyre-road noise sources are amplified by the geometry made by 
the tyre and the road surface. This amplification not only applies  to punctual pressure 
(directivity effect) but also to the total radiated power [2]. Different approaches have been used 
to model the horn effect: analytical (or semi-analytical) and numerical modelling (FEM and 
BEM). Within the analytical approaches one finds the equivalent sources method. Multipole 
synthesis has been used by W. Kropp [3] for the 2D cylindrical case by introducing an image 
multipole to fit the perfectly reflecting condition on the road surface. This method also permits  
the introduction of a reflexion coefficient affecting the image source to take into account an 
absorption of the road surface [3], [4]. Otherwise the absorbing acoustical properties of the road 
surface are taken into account in BEM codes by modelling the coupling between the air and a 
porous layer (extended reaction) [5]. 
 
In this paper the multipole synthesis approach is extended to take into account the absorbing 
properties of the road pavement by introducing a boundary condition of localized reaction 
impedance on the road surface. In the first part of this paper the principle of multipole synthesis 
in the presence of a locally reacting surface is brought in mind for the 2D case of an infinite 
cylinder [6]. In the second part, the method of resolution is described for the 3D case of a 
sphere. A special attention is made to how to introduce the acoustical impedance of the road 



surface in the multipole synthesis method. In the third part, power amplifications due to the horn 
effect for reflecting or absorbing surfaces are calculated and compared to each other in the 2D 
and 3D cases. 
In this paper, we will consider harmonic sources. The time dependency is chosen to be tje ω . 
The wave number in air is noted as ck /ω=  (c is the celerity of sound in air). 
 
 
 
2D MULTIPOLE SYNTHESIS FOR A CYLINDER PLACED NEAR A PLANE ABSORBING 
SURFACE: 
 
Principle: 
 
An infinite cylinder of radius a  placed near a plane surface is considered . The distance 
between the centre of the cylinder and the plane surface is 2/b  ( ab >2/ ) (see figure 1). The 
harmonic radial velocity of the cylinder )( 1θv  is the input of the problem which consists in 
determining the acoustic pressure outside the cylinder taking into account the reflecting 
condition on the plane surface. 
 

            
 

Figure 1 – Notations – Definition of the coordinates systems 
 

The principle of resolution of this radiation problem is described in [3] for a perfectly reflecting 
condition on the plane surface. The 2D multipole synthesis consists in expanding the pressure 
field in terms of outgoing wave functions θjm

m ekrH )()2( , where )2(
mH  denotes the Hankel function 

of second kind of order m . A primary cylindrical multipole is then placed at the centre of the 
cylinder. Moreover to fulfill the reflecting condition on the plane surface, an image cylindrical 
multipole is introduced ( see figure 1 for the definition of the coordinates systems) . 
The pressure field is then expressed as the sum of the pressure contributions of the primary 
source 1p   and its image source 2p : 
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Determination of the Modal Coefficients: 
 
The modal coefficients ma  and mb  are determined by fulfilling the boundary conditions on the 
cylinder and on the plane surface. The method is described in [6]. The main equations 
governing the problem are given here after. 
 
 Boundary Condition on the Cylinder: 

The velocity condition on the cylinder is given by )(
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where mv  is the Fourier coefficient of )( 1θv  of order m . 
 
 Boundary Condition on the Plane Surface: 
 
The locally reacting condition on the plane surface is written as 0=− ⊥Zvp , where ⊥v  is the 
normal ascending velocity on the surface (where 21 rr = , 21 θθ = ). ⊥v  is given by 
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The pressure on the surface is ( ) 1)( 1
)2( θjm

m
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For a perfectly reflecting condition on the plane surface ( 0=⊥v ), one finds from equation (2) 

that mm ba = for all m .  
For an absorbing surface characterised by the normalised impedance cZz ρ/= , one gets  
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The set of linear equations (2) and (3) permit to determine the modal coefficients ma  and mb . It 
is to be noted that the velocity distribution on the cylinder is not perfectly fulfilled (see [6]).  
 
 
 
MULTIPOLE SYNTHESIS FOR A SPHERE PLACED NEAR A PLANE SURFACE 
 
A similar appoach from that used for the cylinder has been applied to the case of a spherical 
radiator vibrating with the velocity distribution ),( 11 ϕθv . The sound pressure is expressed as the 
sum of contributions from the sphere and its image: ),,(),,(),,( 22221111111 ϕθϕθϕθ rprprp += . 

Each contribution is expanded in spherical outgoing wave functions : 
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where )2(
mh  represents the m -th order spherical Hankel function of second kind and mnP  the 

Legendre function of order ),( nm . The coordinates systems are chosen in order to have 
ϕϕϕ == 21 (see figure 2). The relationships between the coordinates ),( 22 θr  and ),( 11 θr  are 

then the same as those for the cylinder. 
 

 
Figure 2 – Coordinates systems for the sphere 

 



The determination of the modal coefficients mna  and mnb  is done by expressing the boundary 
conditions on the sphere and on the plane surface. The choice of the coordinates systems 
implies that there is no interaction between the primary sphere and its image for the longitudinal 
modes ( indices n ). It is then more convenient to express the pressure expansion as: 
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Boundary Condition on the Sphere: 
 

The boundary condition on the sphere is expressed as ),(
1

1
1

1
ϕθ

ωρ
v

r

p

j ar =
∂
∂

− = . Using the 

addition theorem for spherical waves functions is possible as for the cylinder and its 
development is under progress. We give here another method which consist in calculating the 
expression of the normal velocity on the sphere ),( 1 ϕθrv given by 
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The components of the velocity distribution of the sphere ),( 1 ϕθv  are noted as mnv : 
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By expanding the term of ),( 1 ϕθrv  affecting the coefficients mnb  on the )(cos 1θϕ
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( ),( bamnγ  coefficients), one gets for each longitudinal mode 0n  a set of linear combinations 

involving the coefficients 
0mna  and 

0mnb  such as 
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Boundary Condition On The Plane Surface: 
 
The expression of the normal ascending velocity ⊥v  is here given by: 
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 Perfectly Reflecting Surface: 
 
Assuming a perfectly reflecting condition on the plane surface ( 0=⊥v ), equation yields the 

equality mnmn ba = for all ),( nm . 
 
 Impedance Plane Surface: 
 
Assuming a locally reacting boundary condition characterised by a normalised impedance z and 
considering the following relationships involving the Hankel and Legendre functions, 
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the expression of  ⊥v  becomes 
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which can be rewritten, after shifting the indices m of +/-1,  as,  
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The pressure on the plane surface is 
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As for the case of the cylinder, the impedance condition on the plane surface 0=− ⊥Zvp  leads 
to a set of linear equations involving the modal coefficients mna  and mnb : 
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Calculation of the Modal Coefficients: 
 
Solving the problem requires the truncation of the infinite summation over the indice m . All 
modal coefficients are considered to be zero for Mm > . As mentioned above, for each 
longitudinal mode 0n , one gets from equations (4) and (5) a linear system involving the 

)1(2 0 +− nM   coefficients 
0mna  and 

0mnb . As for the case of the cylinder, the impedance 

condition on the plane surface leads to a system with more equations than unknowns (see [6]). 
Perfectly fulfilling the boundary condition on the plane surface renders an approximately fulfilled 
velocity condition on the sphere. However for a piston-like distribution defined on the sphere, 
the quadratic error between the prescribed and the actual velocity is sufficiently small. 
 
 
 
COMPARISON BETWEEN A FINITE IMPEDANCE SURFACE AND THE PERFECTLY 
REFLECTING SURFACE FOR THE CYLINDRICAL AND SPHERICAL RADIATORS 
 
Calculations have been done to evaluate the influence of a surface of finite impedance on the 
horn effect. A velocity distribution on the cylinder and the sphere is chosen to simulate a piston 
located at an angle 1θ  of 20 degrees and with an angular size of 10 degrees. The amplification 
due to the horn effect is  defined here by the ratio between the power radiated by the cylinder or 
the sphere in the upper half-space in the presence of the plane surface and the power radiated 
by the cylinder or the sphere in free field. The calculations of the amplification have been done 
for a perfectly reflecting surface and for an absorbing surface. Figure 3-Left shows the 
normalized impedance and the absorption coefficient of the absorbing surface as a function of 
frequency. The effects of this particular case of a finite impedance condition are shown in figure 
3-Right where the power amplifications of both cases (finite and infinite impedance) are 
compared. For this case, the power amplification due to the horn effect is strongly reduced. 
However there is no simple relationship between the difference of amplifications observed with 
the cylinder and the absorption coefficient of the surface for plane waves in normal incidence, 
while it seems to be a better accordance for the case of the sphere. 
 



        
 

Figure 3 – Left: Absorbing properties of the finite impedance surface – 
 Right: Power amplifications for the cylinder and the sphere 

 
 
 
CONCLUSION 
 
The multipole synthesis method has been used for the modelling of the radiation of a cylinder or 
a sphere placed near a plane surface. It has been shown how to take into account a finite 
impedance condition in the formulation of the multipole synthesis method. The method has 
been applied to the tyre-road noise horn effect. The  example given here shows a great 
influence of the finite impedance on the horn effect with respect to perfectly reflecting 
conditions. The influence of the use of an impedance model of localized reaction instead of an 
extended one is yet to be clarified. 
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