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ABSTRACT: 
 
Straight, finite, cylindrical steel shells with hemispherical end caps were modeled with simple 4 
node shell elements. A numerical modal analysis was performed on the models, systematically 
varying a number of parameters, like radius, length, shell thickness. The eigenfrequencies of 
the circumferential modes were plotted versus their corresponding axial wave numbers (k-ω-
diagrams). The resulting curves, with the circumferential wave numbers as parameter, indicate 
the existence of a constant limiting velocity. The value of this velocity increases with decreasing 
radius of the shell. The comparison with analytical calculated eigenfrequencies for simply 
supported finite cylindrical shells shows very good agreement.  
 
 
INTRODUCTION 
 
In technical acoustics, cylindrical structures, like pipes or fluid containers play a major role. Pipe 
structures usually can be approximated by infinite cylinders, where analytical solutions for many 
applications are available. Finite cylindrical structures are in general more difficult to treat, 
especially if certain boundary conditions are required. If the structure includes end caps with 
particular geometry, finite element models are in general more suitable to the problem. 
Additional effort is needed in case of fluid loading of the cylinders. If the fluid is inside of the 
structure, the volume of the cylinder has to be discretised with finite elements, too. Submerged 
shells can be treated either by a finite volume around the structure with absorbing elements at 
the boundary, or with semi infinite elements at the boundary, or with the coupling of Finite 
Element Methods and Boundary Element Methods (FEM/BEM). The absorbing element 
approach is only an approximate solution of the problem, since exact absorption usually occurs 
only for certain incident angles [1]. Different numerical approaches for the semi infinite element 
solution are available e.g. [2], [3]. They present the solution for the most general types of 
problems for submerged structures, since the whole finite element model is present throughout 
the complete calculation and even inhomogeneous fluid properties can be treated. However, the 
necessary numerical effort for the discretisation of the fluid volume depends on the nature of the 
problem and the number of degrees of freedom increases rapidly with the upper frequency limit. 
In this paper, a coupled FEM/BEM algorithm, based on the added mass approach for the fluid 
loading is used, since it requires only marginal additional effort for the numerical model and the 
calculation of coupled eigenfrequencies [4].  
 



 

 

NUMERICAL MODEL 
 
The FE-package ANSYS, which was used to model and calculate the dynamical properties of 
the cylindrical steel shells with hemispherical end caps offers the opportunity to build and 
calculate models based on the ANSYS parametric design language (APDL) [5]. Thus, different 
models with varying parameters, like radius, length, and shell thickness could be handled very 
easily. However, the evaluation of the results had to be done by hand. Therefore, the variation 
of parameters was confined to a certain number of values in order to reduce the overall 
evaluation time. Every model comprises roundabout 13,000 nodes and shell elements, which 
corresponds to a number of almost 80,000 degrees of freedom. A number of 200 modes was 
calculated for each of the models with free-free boundary conditions. The ratio of length to 
radius varied from 0.067 to 0.096. Table 1 shows a matrix of the different geometrical 
parameters. Standard material properties for steel were used in the models: 
 Density:   7800 kg/m³ 
 Poisson ratio:  0.3 
 Young Modulus: 2.1e11 Pa; 
 

length L  
[m] 

radius a  
[m] 

shell thickness h  
[mm] 

velocity  
[m/s] 

35 2.4 16 326.1 
30 2.4 16 322.4 
30 2.2 16 340.8 
30 2.0 16 362.2 
30 2.0 18 379.6 
30 2.0 20 399.8 
25 2.4 16 323.5 

 
Table 1.- Geometrical parameters of the calculations with corresponding limiting velocity 
 

 
Fig. 1.- Eigenfrequencies of a finite cylindrical steel shell with hemispherical end caps in 

vacuum vs. wave number along the cylinder axis, FE-solution 
 
 
 



 

 

RESULTS 
 
The calculated eigenfrequencies of the shells are plotted versus the axial wave number of the 
vibrating cylinder. Modes of common circumferential order are marked by colored lines. The 
convention for the numbering of circumferential orders follows Cremer, Heckl, [6], (breathing 
mode is order 0, bending mode is order 1, etc.). Figure 1 shows the diagram of the cylinder with 
a length L of 35 m, a radius a of 2.4 m and a shell thickness h of 16 mm. The eigenfrequencies 
in the diagram are grouped below a straight line. The slope of this line in the k-ω-diagram 
corresponds to a constant velocity of 326.1 m/s. Since no eigenvalues are found above this line, 
we can assume a limiting velocity for the cylindrical shells. For the different geometrical 
parameters of the calculated cylinders, the limiting velocity varies with the geometrical 
parameters of the cylinders. The last column of Table 1 shows the limiting velocities of the 
corresponding combination of parameters. It is obvious, that the velocity doesn't vary much with 
the length of the cylinder. However, both, the radius and the shell thickness cause significant 
variations of the velocity. The velocity increases proportional with the shell thickness and 
indirect proportional with the radius of the cylinders.  
 
Junger & Feit, [7], give an exact derivation for the analytical calculation of the natural 
frequencies of simply supported finite cylindrical shells. However, for our purposes, an 
approximate equation for the calculation of eigenvalues of predominantly radial modes is 
sufficient: 
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mk  is the axial wave number  
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(Equ. 3) 
and sk  is the helical wave number 
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Equation 1 was applied to calculate the radial eigenfrequencies of a corresponding simply 
supported shell. The length L of this shell is similar to the strictly cylindrical part of the FE-
model. Figure 2 shows the results of the analytical calculation. Again, the circumferential orders 
of the eigenmodes are grouped by colored lines. Markers for the discrete values have been 
omitted, to distinguish the plot of the analytical values from the FE-results. The qualitative 
impression of both figures is very similar. The limiting velocity of the analytic solution of the 
simply supported shell is 327.6 m/s. This is only 0.4 % more than the one of the FE-calculation. 
It seems, that a simply supported cylindrical shell is an excellent approximation for cylinders 
with hemispherical end caps and free-free boundary conditions.  
 
 



 

 

 
Fig. 2.- Eigenfrequencies of a simply supported finite cylindrical steel shell in vacuum vs. wave 

number along the cylinder axis, approximate analytic solution (continuous curves for 
convenience, only) 

 

 
Fig. 3.- Eigenfrequencies of a simply supported finite cylindrical steel shell in vacuum vs. wave 

number along the cylinder axis, approximate analytic solution up to 700 Hz (continuous 
curves for convenience, only) 

 



 

 

The analytical solution can be easily extended to higher frequencies without much additional 
effort. Figure 3 shows the k-ω-diagram of the same shell up to frequencies of 700 Hz. Three 
things are remarkable in this figure:  
• the concept of the limiting velocity is only valid for low frequencies, in this case about 

200 Hz, 
• the dispersion of the circumferential order modes changes with increasing axial order 
• higher order circumferential modes show the same dispersion behavior as bending modes 

on plates, which means that the curvature of the cylinder surface becomes negligible.  
 
The boundary element package SYNOISE offers a coupled FEM/BEM-solution, using an added 
mass approach to calculate the dynamical behavior of submerged structures, [4]. In principle, 
the influence of the fluid loading of structures is strictly frequency dependent. For a given 
frequency within the range of interest, the added mass will be calculated on the basis of a 
coupled system of equations, including FE-matrices, BEM influence matrices, and coupling 
matrices. As long as the considered frequency range is small, this is a reasonable 
approximating approach. In order to reduce the number of degrees of freedom of the 
unsymmetrical coupled system of equations, the FE-system was replaced by a modal basis. 
This is again an approximation, which requires a high number of modes, up to at least twice the 
frequency of interest. The already available eigenmodes of the shells in vacuum served as a 
modal basis for the coupled calculation. As an example, the k-ω-diagram of the 35-2.4-shell is 
given in Fig. 4. Due to the fluid loading, the coupled eigenfrequencies are lower than the values 
in vacuum. The exact percentage of the frequency shift depends on the type and order of the 
mode, respectively. The strongest effect occurs at the low order modes. Therefore, more of the 
submerged eigenvalues are grouped at lower frequencies. The density of the higher order 
modes seems to be less than in vacuum. However, this is mainly caused by the fact, that a fixed 
number of uncoupled modes was used for the calculation of the submerged modes. Hence, 
unlike the shell in vacuum, the limiting curve in the diagram is no longer a straight line and thus 
a constant limiting velocity cannot be defined, even at frequencies below 100 Hz. 
 

 
Fig. 4.- Eigenfrequencies of a submerged finite cylindrical steel shell with hemispherical end 

caps vs. wave number along the cylinder axis, coupled Fem/BEM-solution 
 
 
 



 

 

CONCLUSION 
 
A number of straight, finite, cylindrical steel shells with hemispherical end caps were modeled 
with simple 4 node shell elements. Parameters, like radius, length, and shell thickness were 
systematically varied. After the numerical evaluation of the modal analysis, the eigenvalues 
were plotted versus their corresponding axial wave numbers (k-ω-diagrams). The resulting 
curves, with the circumferential wave numbers as parameter, indicate a constant limiting 
velocity. The value of this velocity increases proportional with the shell thickness and indirect 
proportional with the radius of the shell. The comparison with analytical calculated eigenvalues 
for simply supported finite cylindrical shells shows very good agreement. However, the concept 
of a limiting velocity makes only sense for low frequencies. For higher order modes, the 
curvature of the cylindrical shell becomes negligible and the modes show similar behavior as 
bending waves on plates. 
No constant limiting frequency can be defined for submerged shells. Even at very low 
frequencies, the limiting curve in the k-ω-diagrams is not a straight line.  
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