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ABSTRACT

The literature of glottal models is reviewed and the properties of one-mass models, as opposed
to multi-mass models, are discussed. A one-mass model is then presented, in which the non-
linear interaction between fold displacement and airflow is described through a modified equation
that accounts for vertical phase differences between upper and lower fold edges. It is shown
that the system behaves qualitatively as higher-dimensional models (e.g., the two-mass Ishizaka–
Flanagan model). Numerical techniques for the simulation of the model are discussed, and a
method is presented which allows accurate and efficient computation of the non-linear terms.

INTRODUCTION

Features of the glottal source signal (i.e. the glottal flow) carry most of the information that char-
acterizes voice quality and speaker identity [1, 6], and accordingly research on source models is
becoming increasingly important in speech synthesis research. Parametric models fit the glottal
signal with piecewise analytical functions, and typically use a small number of parameters. As
an example, the Liljencrants-Fant model [8] characterizes one cycle of the flow derivative using
as few as four parameters. Physical models describe the glottal system in terms of physiological
quantities. The Ishizaka-Flanagan (IF) model [9] is a known example of lumped model of the vocal
folds. Physical models capture the basic non-linear mechanisms that initiate self-sustained oscil-
lations in the glottal system, and can simulate features (e.g. interaction with the vocal tract) that
are not taken into account by parametric models. However they typically involve a large number
of control parameters, and are more computationally expensive than parametric models.

This paper presents results about efficient yet accurate numerical modeling of the glottal sys-
tem. First, the lumped modeling approach and specifically the IF model is reviewed. Then a
simplified “one-delayed-mass” model, originally presented in [2], is described. Finally, a numerical
scheme is developed for efficient simulation of the model.

LUMPED MODELING

The IF model

In the lumped modeling approach, a complex mechanical system is described by means of basic
elements such as springs, masses, and damping elements. The Ishizaka-Flanagan (IF) model ad-
dressed in this section describes each vocal fold using a two-mass approximation. It is assumed
that the folds are bilaterally symmetric, so that only one needs to be modeled. As a consequence,
the model is constructed using two masses m1 and m2, as in Fig. 1. The masses are permitted
only lateral motion (see the coordinates x1 and x2 in Fig. 1(b)). Along this direction, the masses
are assumed to behave as second-order mechanical oscillators, i.e. they are subject to elastic
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Figure 1: Schematic representation of the Ishizaka-Flanagan model: (a) coronal view and (b) superior view.

and dissipative forces. For the accurate simulation of the elastic properties of the fold, the springs
are non-linear and the coefficients k1(x1) and k2(x2) are modeled as quadratic functions of the
corresponding displacements. The masses are coupled through a third spring k12. The viscous
forces are modeled as linear damping terms, with weights r1 and r2, respectively.

Collisions between the folds are accounted for by adding an additional restoring contact force
to the equations, which is represented by an equivalent non-linear spring. In other words, when
one of the masses mk collides (i.e., when the condition xk < 0 holds for k = 1 . . . 2), its stiffness
kk(xk) is increased. Summarizing, the equations for the mechanical system are given by{

m1ẍ1(t) + r1ẋ1(t) + k1(x1)[x1(t)− x01] + k12[x1(t)− x2(t)] = lgd1pm1(t),
m2ẍ2(t) + r2ẋ2(t) + k2(x2)[x2(t)− x02]− k12[x1(t)− x2(t)] = lgd2pm2(t),

(1)

where pm1 and pm2 are the mean pressures under m1 and m2, respectively, while lgd1 and lgd2

are the driving surfaces on which the two pressures act; x01 and x02 represent the rest positions.
The interaction with the glottal pressure distribution is derived under the assumption of quasi-

steady glottal flow u(t). The pressure distribution inside the glottis is approximated as successive
discrete steps pij at each end j of each mass i (see Fig. 1(a)). The pressure drops along the
glottis are given by the following equations:

ps − p11(t) = 0.69ρair
u(t)2

A1(t)2
,

p11(t)− p12(t) = 12νd1
l2gu(t)

A1(t)3
,

p12(t)− p21(t) = 1
2ρairu(t)2

(
1

A2(t)2
− 1

A1(t)2

)
,

p21(t)− p22(t) = 12νd2
l2gu(t)

A2(t)3
,

p22(t)− p(t) = 1
2ρair

u(t)2

A2(t)2

[
2A2(t)

S

(
1− A2(t)

S

)]
,

(2)

where ν and S are the air shear viscosity and the vocal tract input area, respectively. The authors
also discuss the inclusion of air inertance in the equations, when time-varying conditions are
considered. Given the pressure drops in Eq. (2), the driving pressures pm1 and pm2 acting on
m1,2 must be derived. In the IF model, these are defined as the mean pressures along each
mass:

pm1(t) =
1
2
[p11(t) + p12(t)], pm2(t) =

1
2
[p21(t) + p22(t)]. (3)

In conclusion, the IF model is completely described by Eqs. (1) and (3).

Properties of lumped models

The IF model can take into account features that are not reproduced by a parametric model; in
particular, acoustic interaction with the vocal tract can be accounted for. Many refinements have
been proposed to IF, in which a larger number of masses is used, or the description of the airflow
though the glottis is modified. (e.g., the three-mass model by Story and Titze [12]). On the other
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Figure 2: First two excited modes in a distributed model of the vocal folds.

hand, simpler one-mass models are used by many authors in articulatory speech synthesizers
(see e.g. [10]), due to their reduced computational loads and better controllability. However, these
models are not able to account for phase differences in the vocal fold motion, and consequently to
generate a driving force which is asymmetrical within the cycle. According to some authors [11],
this is the reason why one-mass models can not exhibit autonomous oscillations.

The IF model has two eigenmodes which are conceptually equivalent to those found by Berry
and Titze [4] using a distributed three-dimensional numerical model of the vocal folds (see Fig.
2). The IF mode where the two masses move π-out of phase corresponds approximately to the
one in Fig. 2(a), while the mode with the two masses in phase corresponds to that of Fig. 2(b).
Berry and Titze suggest that the success of the IF model in describing the glottal behavior might
be attributed to its ability to capture these two eigenmodes, and therefore facilitate self-oscillation.

A serious objection to all the models mentioned above has been raised by Villain et al. [13].
The authors remark that elementary mechanical constraints on the physiological problem are ne-
glected in these models. Both the lumped and the distributed approach assume that the elastic
structure is fixed to a rigid wall, which is a crude approximation since in reality a significant ra-
diation of surface waves from the throat can be noticed when voiced sounds are produced. The
effect of this radiation may be significant in terms of energy loss in the system. Villain et al.
used an experimental setup where the folds are modeled by thin latex tubes filled with water, and
showed that the behavior of the valve is strongly affected by the mechanical constraints. The
authors therefore claim that modal analysis on glottal models such as the one developed in [4] is
questionable.

One shortcoming of lumped models is that the glottal area (e.g. A1 and A2 in IF) is assumed to
be rectangular. As a consequence, closure of the glottis occurs in an abrupt manner and the flow
signals obtained from the model exhibit a sharp corner at the beginning of the closed phase. This
affects the spectral tilt of the glottal source, introducing additional energy at high frequencies. In
natural flow signals, a smoother glottal closure is usually observed. Stroboscopic measurements
often show zipper-like movements of the glottal area during the closing phase. Lumped models
do not take into account these phenomena.

When used for speech synthesis purposes, multi-mass models suffer from over-parametrization:
as an example, as many as 19 parameters have to be estimated in the IF model. Proposed re-
finements to IF (see e.g. Story and Titze [12]) involve an even larger number of parameters and
are hardly controllable and more computationally expensive.

One-delayed-mass model

Equation (2) shows that the positions x1 and x2 of both masses are needed in order to compute
the pressure drops pij in the IF model. The “one-delayed-mass model”, originally presented in
[2], avoids the use of a second mass by exploiting additional information on the system.
• As already remarked, the two eigenmodes of IF correspond roughly to the first two excited
modes of a distributed model [4] (see Fig. 2). Berry and Titze found that the two eigenfrequencies
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Figure 3: Scheme of the one-delayed-mass model (lower half) as opposed to the IF model (upper half).

are very closely spaced. As a consequence, 1 : 1 mode locking occurs during self-oscillation.
• De Vries et al. [7] used a distributed model for estimating “correct” values for the IF parameters
(i.e. the values such that IF behaves as closely as possible like the distributed model). The
parameter values were found in [7] to be very much symmetrical: the ratio m1/m2 is close to one
(while it was chosen to be clese to five in [9]), and the same holds for the other parameters.
From these results, the IF model can be consistently simplified using the following assumptions.
a1. The masses m1,2 are taken to be equal, together with their parameters.
a2. The masses move with constant phase difference, because of mode locking:

A2(t) = A1(t− t0), (4)

where t0 represents the delay (in seconds) between the motion of upper and lower fold edges.
From Eq. (4) it follows that the pressure drops of Eqs. (2) depend only on A1(t) and A1(t−t0): this
suggests that only one degree of freedom is needed in the model. Therefore, the fold is described
as a single mass m subject to elastic and viscous forces, with stiffness k and damping weight r1.
Similarly to IF, the driving pressure acting on the fold is defined as the mean pressure pm at the
glottis: pm = 1/4

∑2
i,j=1 pij . The fold displacement x(t) is thus given by

mẍ(t) + rẋ(t) + k(x(t)− x0) = lgdpm(t), (5)

where lgd is the driving surface and x0 is the rest position. From assumption a1, the mass m is
given by m = 2m1. Explicit expressions for the driving pressure pm and the pressure at vocal tract
entrance p are derived from Eq. (2), and depend only on (x(t), xt− t0), u(t)):

pm(t) = pm(x(t), x(t− t0), u(t)), p(t) = p(x(t), x(t− t0), u(t)). (6)

Equations (5) and (6) describe the one-delayed-mass model. From Eq. (5) it is seen to be a
one-mass model, but the dependence on the delayed displacement x(t− t0) in Eq. (6) results in a
modified non-linear interaction, and the effects due to phase differences between the upper and
lower margins of the folds are controlled by the delay t0. A graphic representation of the model,
as opposed to IF, is depicted in Fig. 3.

NUMERICAL SIMULATIONS

Discrete-time equations

The IF model was implemented numerically in [9] using the backward Euler method. Coupling
between the non-linear equations was avoided by inserting fictitious delays in the equations. This
section develops a more accurate numerical scheme. The linear differential Eq. (5) is discretized
using the bilinear transform, and the resulting numerical system can be schematically written as w(n) = w̃(n) + C̄p(n),

x(n) = x̃(n) + Kp(n),
p(n) = fn0

(x(n)) = fn0
(x̃(n) + Kp(n)) ,

(7)
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Figure 4: Dependence of (a) the speed quotient SQ and (b) the maximum amplitude on t0 for the airflow
(Fs = 22.05 [kHz], ps = 1000 [Pa]).

where the variables are given by

w(n) =
[

x(n)
ẋ(n)

]
, x(n) =

[
u(n)
x(n)

]
, p(n) =

[
pm(n)
p(n)

]
,

and where non-linear mapping fn0
: R

2 → R
2 is obtained from Eq. (6). The mapping is

parametrized with the numerical delay n0. Given a sampling rate Fs, n0 is defined as n0 = t0Fs.
The vectors w̃(n) and x̃(n) have no instantaneous dependence on the pressures p(n), and are
therefore computable at each step from known quantities. System (7) shows that a delay-free
path is generated, such that the vocal fold state vector w(n) and the pressure vector p(n) have
mutual instantaneous dependence. Due to the non-linear term fn0

, the difference equations can
not be solved analytically. Instead, the K method [5] is used: this method operates a geometric
transformation on the non-linearity, in such a way that the delay-free path can be computed with-
out introducing fictitious delays in the discrete-time equations. By exploiting the implicit function
theorem, the mapping fn0

in system (7) is turned into a new-one:

p(n) = fn0
(x̃(n) + Kp(n)) K method7−→ p(n) = hn0 (x̃(n)) . (8)

At each time step, the pressure vector p is found as a function of the known vector x̃. The mapping
hn0(x̃) can be computed off-line and stored in a look-up table: in this case the implementation
requires only linear operations and one look-up at each time step. However, when the control
parameters vary over time hn0(x̃) needs to be recomputed on-line. In these case, a more efficient
implementation strategy amounts to computing h(x̃) iteratively at the sampling rate, in two steps:
(1) the current value of x̃ is computed, and (2) the current value of p is found by imposing
fn0

(x̃ + Kp)− p = 0. The Newton-Raphson method can be used to iteratively solve this implicit
non-linear equation. Using the past value y(n − 1) as the starting point in the Newton-Raphson
iterations provides a fast convergence of the algorithm to the new value. This approach has been
recently adopted for developing numerical simulations of single reed wind instruments [3].

Properties of the model

The numerical implementation described above was used to study the properties of the one-
delayed-mass model. Specifically, the influence of the delay t0 on the signal parameters (such
as pitch, open quotient, speed quotient, maximum amplitude), was investigated through auto-
matic analysis on the numerical simulations. The results given in the following were obtained by
analyzing 0.3 [s] long flow signals, where the values of t0 range from 0.1 to 1.9 [ms].

The speed quotient provides a quantitative measure of the flow skewness: it is defined as the
ratio between the opening phase (u̇(t) > 0) and the closing phase (u̇(t) < 0). The speed quotient
is known to have perceptual relevance in characterizing different voice qualities: for instance,
analysis on real signals by Childers and Ahn [6] show that the speed quotient ranges from about
1.6 to 3 when the voice quality changes from breathy voice to vocal fry and finally to modal voice.
Figure 4(a) shows the dependence of the speed quotient on t0: it is seen that, in the range



under consideration, the speed quotient is approximately a linear function of t0. By appropriately
choosing t0, one can range from very low up to extremely high values of the speed quotient.

Figure 4(b) shows the dependence of the maximum flow amplitude on t0. This exhibits a peak
around t0 = 8 · 10−4 [s]. This suggests the existence of an optimum delay t0 that maximizes the
aerodynamic input power (defined as mean subglottal pressure times mean glottal flow), which is
in turn related to the glottal efficiency, usually defined as the ratio of radiated acoustic power to
aerodynamic power (i.e., the power delivered to the vocal system by the lungs). Further analysis
is needed in order to assess the precise influence of t0 on the glottal efficiency.

CONCLUSIONS

This paper has focused on efficiency issues in numerical simulations of vocal fold models. First,
the one-delayed-mass model has been described. On the one hand, only one degree of freedom
is needed, instead of two [9] or more [12] usually assumed in higher-dimensional lumped models
of the vocal folds. On the other hand, the dependence on t0 in Eq. (6) results in realistic glottal
flow waveforms, that are not obtained with usual one-mass models [10].

Second, a discretization scheme has been described, which allows efficient and accurate
numerical simulations of the one-delayed-mass model. Results from numerical experiments show
that t0 provides control on the airflow skewness. The numerical model is therefore a reasonable
trade-off between accuracy of the description and simplicity of the structure.

Further studies will investigate the interaction of the glottal model with vocal tract loads, in
order to discuss applications of the proposed glottal model in articulatory speech synthesis. Pre-
liminary results, obtained by coupling the one-delayed-mass model with a digital waveguide bore
model, show the occurrence of ripples in the airflow signal, mainly due to interaction with the first
resonance of the tract. Moreover, automatic analysis reveals a slight dependence of pitch on the
vocal tract characteristics.
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