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ABSTRACT
High-order accurate and unconditionally stable time-discontinuous methods are implemented with
nonreflecting boundary conditions in an adaptive space-time finite element method for acoustic
radiation and scattering problems in exterior domains. An h-adaptive space-time procedure based
on the Z2 error estimate and the superconvergent patch recovery (SPR) technique, together with
a temporal error estimate arising from the discontinuous jump in solution between time steps is
used to maintain accuracy within a prescribed tolerance and drive dynamic mesh distributions.
Error estimates of the nonreflecting boundaries are also monitored in the solution process. A
new superconvergent interpolation method is developed for projection between adaptive meshes.
Numerical studies of time-dependent scattering from an ellipse demonstrate the efficiency and
reliability gained from the adaptive solution.

Introduction

We describe recent advances in the development of high-order accurate and unconditionally stable
space-time methods which employ finite element discretization of the time domain as well as the
usual discretization of the spatial domain. In particular, we examine the implementation of a
sequence of high-order accurate radiation boundary conditions [1, 2, 3, 4] in an adaptive space-
time finite element method for acoustic radiation and scattering problems in exterior domains.
In particular, a multi-field discontinuous Galerkin finite element method (DGFEM) is used with
independent acoustic pressure and velocity variables, [5, 6]. A multi-level iterative scheme is used to
solve the resulting fully-discrete system equations for the interior hyperbolic equations coupled with
the first-order temporal equations associated with auxiliary functions in the nonreflecting boundary
conditions. The iterative strategy requires only a few iterations per time step to resolve the solution
to high accuracy. An h-adaptive space-time strategy is employed based on the Zienkiewicz-Zhu [7]
spatial error estimate using the superconvergent patch recovery (SPR) technique, together with
a temporal error estimate arising from the discontinuous jump in velocity and pressure between
time steps. As sound pulses propagate throughout the mesh, elements are refined near wave fronts,
and unrefined where the solution is smooth or quiescent. Time-steps are also adjusted to maintain
given error tolerances. Errors in the time integration of the auxiliary functions in the nonreflecting
boundary conditions are also monitored and maintained within a tolerance. Numerical studies of
transient scattering demonstrate the reliability and efficiency gained from the adaptive strategy.

Two-Dimensional Wave Equation on Unbounded Domains

We consider time-dependent waves in an infinite two-dimensional region R ⊂ R2, surrounding an
object with surface S.
Within Ω, the solution u(x, t) : Ω× R+ 7→ R, satisfies the scalar wave equation,

1

c
∂tv = ∇

2u + f(x, t), v =
1

c
∂tu, x ∈ Ω, t ∈ R+ (1)
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Figure 1: Illustration of two-dimensional un-
bounded region R surrounding a scatterer S.
The computational domain Ω ⊂ R is surrounded
by a circular truncation boundary Γ of radius R,
with exterior region D = R− Ω.

with initial conditions, u(x, 0) = u0(x), v(x, 0) = v0(x). On the scatterer, we can specify a
Neumann boundary condition, ∂nu = g(x, t), x ∈ S, t ∈ R+.
We denote the solution evaluated on the circular truncation boundary at r = R by,

uΓ(θ, t) = u(R, θ, t), vΓ(θ, t) =
1

c
∂tuΓ, θ ∈ [0, 2π), t ∈ R+, (2)

Letw(θ, t) = {wj(θ, t)}
p
j=1, be defined as a time-dependent vector of real valued scalar auxiliary

functions, i.e., w = (w1 , w2 , · · · , wp). We can expand the auxiliary functions w(θ, t) and solution
on the truncation boundary uΓ(θ, t) by a Fourier series,

uΓ(θ, t) =

∞∑
m=−∞

um(t) e
imθ, w(θ, t) =

M∑
m=−M

wm(t) e
imθ (3)

with complex-valued Fourier modes um(t) : R
+ 7→ C, and wm(t) = {wjm}

p
j=1, wm,j(t) : R

+ 7→ C,
defined by the tangential Fourier transform:

um(t) =
1

2π

∫ 2π
0

uΓ(θ, t) e
−imθ dθ, wm(t) =

1

2π

∫ 2π
0

w(θ, t) e−imθ dθ. (4)

Here um = u
∗
−m, and wm = w

∗
−m, with the asterisk denoting the complex conjugate, and i =

√
−1.

Using this expansion, we then approximate the exterior impedance on Γ, by the sequence of
high-order accurate radiation boundary conditions derived in [4]:

∂ru|r=R + vΓ(θ, t) +
1

2R
uΓ(θ, t) =

N∑
m=−N

w1m(t) e
imθ (5)

w′m(t) +Amwm(t) = bm um(t), wm(0) = 0 (6)

In the above, the prime indicates a derivative; wm(t) are time-dependent vector functions of order
p, and Am = {Aijm}

p
i,j=1, is a tri-diagonal matrix for each mode m, see [4]. The constant vector

bm = {bjm}
p
j=1 is defined by bm =

c
8R2 (1− 4m

2)e1.

Discontinuous Galerkin FEM

The development of the space-time method proceeds by considering a partitionM of the total time
interval, t ∈ J = (0, T ), 0 < T <∞, into N time steps {In}Nn=0 given by In = {(tn, tn+1)}

N
n=0. The

length of the variable time step is given by ∆tn = tn+1 − tn. Using this notation, Qn = Ω × In,
are the nth space-time slabs. Within each space-time slab, the spatial domain is subdivided into
Dn elements. We define the jump operator across space-time slabs as,

[[u(tn)]] = u(x , t
+
n ) − u(x , t

−
n ), 0 ≤ n ≤ N

Standard L2 inner products are denoted, (w , u) =
∫
Ω
wudx, equipped with norm ||u||Ω =

(u , u)1/2. Integrals on boundaries are defined by, (w , u)Γ =
1
2R

∫
Γ
w udΓ, (w , u)S =

∫
S
w udS.
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Figure 2: Illustration of two consecutive
space-time slabs Qn−1 and Qn, each with
different meshes. Within each space-time
element, the trial solution and weighting
function are approximated by a finite basis
which depend on both spatial x, and tem-
poral t, dimensions. The basis functions
are assumed C0(Qn) continuous through-
out each space-time slab, but are allowed
to be discontinuous across the interfaces of
the slabs. The space of finite element basis
functions in our multi-field representation
is stated in terms of independent variables
u, and v.

The statement of the time-discontinuous Galerkin method may be stated as
Given: Load data f , g, and initial conditions {u(x, t−n ), v(x, t

−
n )}, wm(t

−
n ), from the previous time

step, then for each space-time slab, n = 0, 1, . . . , N − 1; Find: u = {u(x, t), v(x, t)}, and wm(t),
x ∈ Ω ∪ ∂Ω, t ∈ In = (tn, tn+1), such that for all admissible functions ū = {ū(x, t), v̄(x, t)}, and
w̄m(t), m ∈ (−M,M), the following coupled integral equations are satisfied,

A(ū , u)n +BΓ(ū , u)n = FS(v̄)n + FΓ(v̄, w
1
m) (7)

Am(w̄m , wm)n = Fm(w̄
1
m, um), m ∈ (−M,M) (8)

with

A(ū , u)n :=

∫
In

{
(v̄ , ∂tv) + (∇v̄ , ∇u) + (∇ū ,

1

c
∇∂tu−∇v)

}
dt

+(v̄(t+n ) , [[v(tn)]]) + (∇ū(t
+
n ) , [[∇u(tn)]])

BΓ(ū , u)n :=

∫
In

{
2R(v̄ , v)Γ + (v̄ , u)Γ + (ū ,

1

c
∂tu− v)Γ

}
dt+ (ū(t+n ) , [[u(tn)]])Γ

Am(w̄m , wm)n :=

∫
In

{w̄m(t) ·w
′
m(t) + w̄m(t) ·Amwm(t)} dt+ w̄m(t

+
n ) · [[wm(tn)]]

Fm(w̄
1
m, um) := b1m

∫
In

w̄1m(t)um(t) dt

FΓ(v̄, w
1
m) := 2R

M∑
m=−M

∫
In

(v̄ , eimθ)Γ w
1
m(t) dt

On a typical current time slab In = (tn, tn+1) = (t1, t2), with length ∆tn = t2 − t1 > 0, and
temporal approximation order r, the DGFEM is found by solving the coupled variational problem
(7)-(8). The source f(x, t), Neumann data g(x, t), initial conditions from the previous time-step
{u(x, t−n ), v(x, t

−
n )}, and wm(t

−
n ), are the known data on the time slab. Coupling occurs through

drivers wm(t) on the right-hand-side of Eq. (7), and boundary modes um(t), defined by (4) on the
right-hand-side of (8).

Space-Time Discretization of the Hyperbolic Wave Equation

In this paper, within a space-time slab, Qn = Ω × In, we assume an orthogonal space-time dis-
cretization with linear temporal approximation,

u(x, t) =
2∑
i=1

uhi (x)φi(t) =Nn(x)
2∑
i=1

φi(t)di (9)



where {φi}2i=1 are basis functions of P
1(In). These basis functions may be high-order spec-

tral, defined by continuous Lagrange interpolation, or p-version, defined by hierarchical Legendre
polynomials. The FE approximations of {ui} are given as linear combinations of basis func-
tions NA, and di = {uA(ti)}

Dn
A=1. The solution at the bottom is denoted, t1 = t

+
n , and top,

t2 = t
−
n+1, the initial condition from the previous step is denoted t0 = t

−
n = t

+
n−1. Similarly,

v(x, t) =
∑2
i=1 v

h
i (x)φi(t) =Nn(x)

∑2
i=1 φi(t)ci. The time-dependent auxiliary functions approx-

imated by,

wm(t) =

2∑
i=1

wm,iφi(t) (10)

Substituting the space-time approximations into the space-time variational equations results in
the fully discrete matrix problem,

[
M̂ M̂12

M̂21 M̂

]{
c1
c2

}
=

{
r̂1
r̂2

}
(11)

where M̂ = M + ∆t
4 C. M̂12 and M̂21 depend on the the mass,damping,and stiffness matrices

M ,C,K. The rhs vectors are functions of: r̂i = ri(fi, c0,M ,K,∆t), The displacements are
simply updated with,

d1 = d0 +
∆t

6
(c1 − c2), d2 = d0 +

∆t

2
(c1 + c2) (12)

d0 = d(t
−
n ), and c0 = c(t

−
n ) are initial conditions from the previous time-step. The load vectors

do to the coupling from the auxiliary function w1m(t) are given by,

fΓj = 2R

M∑
m=−M

w1m,jFm, Fm = {F
m
A }, F

m
A := (NA, e

imθ)Γ

The time discretization for the first-order boundary equations takes the form,

[
I −(I + ∆t3 Am)

3(−I + ∆t3 Am) I

]{
wm,1
wm,2

}
=

{
f̂m,1
f̂m,2

}
(13)

where the rhs vectors are driven by wm(t
−
n ), and the modes um,j ,

um(t) =

2∑
i=1

um,jφi(t), um,j =
1

π
F ∗m,n · dj (14)

A remarkable feature of this form is that for spectral interpolation in space, nodal quadrature may
be used to diagonalize bothM and C, resulting a diagonal mass matrix and complete decoupling
of the equations of the upper and lower sub-block diagonals. In this case, each time step requires
only matrix-vector products with M̂12 at each iteration in the solution for c1 and c2. Wiberg
and Lee [8] derived a different form, with M̂ = M + ∆t

2 C +
∆t
6 K; this submatrix cannot be

convieniently diagonalized because of the presence of K.
The order p used in the radiation boundary is typically less than p < 10, resulting in relatively

small matricesAm. The number of modesm ∈ (−M,M) included depends on the complexity of the
solution as measured by the amplitude of spatial angular wavelengths on the boundary Γ; typically
M � NΓ, where NΓ is the number of nodes on the boundary. The primary cost in implementing
the high-order radiation boundary conditions is not the solution of the equation system (13), but in
the computation of the discrete Fourier transform um,j , which must re-evaluated at each adaptive
remeshing. Nevertheless, this cost is always less that that required to solve the interior equations
for (dj , cj); see [4]. A multi-level iterative method is used between (11) and (13); system (11)
is solved with a simple Gauss-Seidel iterative algorithm, while the relatively small system (13) is
solved directly. Using the initial predictor from the previous time-step, only a few iterations are
needed to solve the coupled equations.
Projection of the solution from the previous space-time slab to the current space-time slab is

obtained by nodal interpolation. For low-order elements in space, standard nodal interpolation
introduces significant error. To correct this difficulty, we have developed a new superconvergent



Figure 1: Scattered field solution at snapshots in time.

interpolation scheme. Prior to projecting, the solution on the top of previous time-slab, t−n , is
interpolated with,

u(x, t−n ) =

Dn−1∑
A=1

N−A (x)
[
uhA(t

−
n ) + ∆xA · ∇u

∗
A(x

c
A, t

−
n )
]

(15)

where, ∆xA = (x − xA) and the vector, ∇u∗A(x
c
A, t

−
n ) is the recovered gradients obtained by

superconvergent patch recovery (SPR) at node A, [7] evaluated at the midpoint between node
xA, and position x. A similar technique is used for v(x, t

−
n ). This scheme may be viewed as a

correction to standard interpolation, and provides nearly an order-of-magnitude improvement in
accuracy. The spatial and temporal error estimates and adaptive strategy we use is similar to that
given in [8]; the main improvements are the use of our superconvergent interpolation (projection)
technique together with an improved mesh distribution parameter [9].

Numerical Example

Consider scattering of a plane wave at 30o incidence, defined by a Ricker pulse, by a rigid elliptic
cylinder. The high-order p = 6, nonreflecting boundary conditions are applied on a surrounding
circle. Figure 1 shows the adaptive solution on linear triangles with spatial, and temporal error
tolerances 10% and 0.5% respectively. The corresponding spatial mesh tracking the scattered
solution is shown in Figure 2.

Conclusions

Comprehensive adaptive procedures for DGFEM including high-order accurate nonreflecting bound-
ary conditions for unbounded problems has been developed. Computationally efficient matrix
structures are used together with a multi-level iterative solver strategy for efficient and accurate
solutions to the wave equation coupled with nonreflecting boundaries. The iterative strategy re-
quires only a few iterations per time step to resolve the solution to high accuracy. Error estimators
are computed to maintain accuracy within a prescribed tolerance and used to drive optimally dis-
tributed meshes and time-steps. A new superconvergent interpolation is developed for accurate
projection between space-time stabs in the adaptive process.



Figure 2: Adaptive mesh tracking scattered solution.
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