Theory and software for Krylov methods for the computation of the
frequency response of large acoustic finite element models.
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ABSTRACT.
The frequency analysis of acoustic cavities and structures often requires the solution of a large number of
linear systems with the frequency as a parameter. The aim of this talk is to review theory and software
for Krylov methods for solving this problem efficiently, and pose remaining open questions. We also
introduce a memory efficient Arnoldi algorithm and present numerical examples from applications that
show the behaviour of the various techniques. We show the connection with the vector-Padé method.

1 Introduction
The goal is to solve the sequence of linear systems
(K +wC +w?M)z(w) = fo+wh (1)

where w is a parameter. In the frequency analysis of acoustics and structures, the engineer is interested
in z(w) for w in the frequency range € = [Wmin, Wmax). The matrices K, —iC, and —M are the stiffness,
damping, and mass matrices respectively. They are large n X n matrices and usually sparse. In practical
computations, the interval €2 is discretized into the set {w1,...,ws}, where k typically ranges from 10 to
1000. Usually, the solution of (1) is obtained by a direct method, so that k sparse matrix factorizations
and k backtransformations are required. Simoncini et al. {14, 15] and Meerbergen [10] suggest the use
of Krylov subspaces to speed-up the computation, which is strongly related to the Ritz vector technique
(16] [7] [3]. In other situations, the Padé via Lanczos method is used [4] [2] [9]. The properties of Krylov
methods cannot be fully exploited because of the quadratic term in w. Instead, (1) is ‘linearized’ into a
problem of the form

(A-wBlylw) =g (2

of double dimension to which a Krylov method is applied [14, 15]. The fact that the Krylov vectors
have length 2n instead of n may limit their practical use, especially when the Arnoldi method is used for
which a large number of vectors need to be stored [1, 8] : m iterations of the Arnoldi method require the
storage of the order of (2m + 3)n floating point numbers (real or complex). In this paper, we introduce
an adapted Arnoldi scheme, that uses the structure of the linearized problem (2) to reduce the memory
requirements to (m + 2)n floating point numbers.

The paper is organized as follows. In §2, we review the Arnoldi method for (2): we introduce a
linearization for (1) and present a modification of Arnoldi’s method that saves memory. We call this
the Q-Arnoldi method, where Q stands for ‘quadratic’. In §5 we show a numerical example arising from
acoustics.

2 The Arnoldi method

Assume that we want to compute the solution of (2) for w near zero. The first step consists of precon-
ditioning (2) into
AT'(A-wBpyWw) =AY ®3)



with N-by-N matrices A and B and where it is important to note that g does not depend on w. We
refer to the books on iterative linear system solvers by Greenbaum [6] and Saad [13] for convergence
properties. If w ~ 0 then A=1(A — wB) ~ I so it is clear that A~! is a suitable preconditioner.

The Arnoldi method applied to S = A~!B and b = A~'g produces the Krylov subspace

K (S, b) = span{b, Sb, §%, ..., S™1b} .

It computes the N x m matrix V,, = [v1,...,Vy] of iteration vectors, the upper Hessenberg matrix H,,
and the residual term v, 418, so that

AT'BV,, ~VpHy = Vimy1Bmel @)

where V5 . Vi = I. Equation (4) is called the Arnoldi recurrence relation. An algorithm for
computing V,, and H,, is now given.

Algorithm 2.1 (Arnoldi method)
1. Set the initial vector vi = b/||b||s.
2 Forj=1,...,m do
2.1. Compute ¥; = A"!Bv;
2.2. Compute the Arnoldi coefficients h; = V3¥;.
2.8. Update (’j = \A’j - thj.
2.4. Get the scalar B; = ||V |l2 and compute vj41 = V;/B;.
End do

Steps 2.2-2.4 orthogonalize A~'Bv; against vy,...,v; into vj+1. The coefficients h; form the jth
column of Hy, and B; is the j + 1, j element of H,,.
An approximate solution to (3) is computed in Arnoldi’s method [12] as §(w) = V,2(w) where

2w) = A7l - wHm) e .

Let us now return to the solution of (1). We consider the case for which f; = 0. The case f; # 0
is discussed by Meerbergen and Robbé [11]. We need to find a pair of matrices A and B so that the
solution of (1) can be easily extracted from (2). A straightforward choice is

[T o] m [ e (8) e (2) o

where D can be any nonsingular matrix. It is easy to see that

_K-l10 _p-1
from which D disappears. Usually, we shift K, C into
K = K+oC+d*M
C = C+2M,

where o is chosen near the w’s of interest. This improves the speed of convergence.
The storage of the Arnoldi vectors in Algorithm 2.1 requires 2n(m + 1) floating point numbers. We

decompose the jth Arnoldi vector into v; = ( :]j. ) with v;,w; € C™. From (4), it can be demonstrated
i

that
v; = WjHj + wj+1ﬂje; . (7)
The Q-Arnoldi algorithm [11] does not store v; but applies (7) when needed. This implies that m Arnoldi

iterations require only the storage of the vectors Wp,, m+1 and wp+1 to evaluate the recurrence relation,
i.e. (2 4+ m)n floating point numbers.



Algorithm 2.2 (Q-Arnoldi)
1. Let v; = K_lf()/”K_'lf(]IIz and w; =0.
2.Forj=1,...,mdo
2.1. Compute 9; = K~}(—Cv; — Mw;) and @¥; = vj.
2.2. Compute the Arnoldi coefficients

hi = ﬁ;—l(W;‘ﬁj) + I:Vj‘—lmj .
4 vjd; + wiw;

2.3. Update

¥ ;= [W; vj] ([ ﬂ{)'l (1] ]h,-)

’lIIj = ’lﬁj - thj .
2.4. Normalize vj41 = ¥;/8; and w1 = w;/B; with B; = (||o;|? + ”‘lf)j“z)l/z.
2.5. Set the jth column of H; as [hy; B;].
End for

From the finite precision arithmetic analysis in [11)], it appears that the Q-Arnoldi algorithm is as
numerically stable as the Arnoldi algorithm, if £(Hp,) is of the order of 1.
3 Vector-Padé connection

The Arnoldi solution is computed as z(w) = Vi2(w) and it can be shown that it can be written in the

form .
— Tj
m(w) - Z 1+ wo,-
j=1

where 6; is an eigenvalue of Hy,,. This is a partial fraction form and is called a vector-Padé approximation.
For the Padé connection, see [4, 10]. The poles are the Ritz values, which are good approximations to
the frequencies for which peaks are produced (eigenfrequencies). This shows that if the spectral density
of the underlying physical problem is high, a large m is required to accurately approximate z(w).

4 Software

Free Field Technologies has developed a Fortran subroutine that solves (1). The major features are the
following:

¢ areverse communication interface for the operations with the matrices K, C and M and returning
the solution z(w) to the user ;

e Availability of both Arnoldi’s method and Lanczos’ method ;
e Out-of-core storage of Krylov vectors ;
o Error estimation ;

Automatic selection of shifts o to make the solution more efficient.

5 Numerical example

In this section we study the problem of an acoustic box with walls covered with carpet with dimensions
0.54m x 0.54m x 0.55m. The material has a complex speed of sound 340 + ¢3.4 and the density is
1.225kg/m3. The box is discretized with 64710 hexahedral elements. The excitation consists of an
acceleration in a disk on a corner of one face of the box. It consists of a constant (unit) contribution 1
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Figure 1: Comparison of Arnoldi and Q-Arnoldi for the numerical example. Figure a shows the residual
norms (8), Figure b shows the error on (4) and (10).

Table 1: Timings in seconds for the box problem. Comparison between the Arnoldi, Lanczos and direct
methods.

Arnoldi Lanczos direct
factorizations 5 7 181
time 522 601 7501

and a frequency dependent component 0.001w on a few nodes of the disk ; therefore, the excitation has
the form fo + wfi.

The matrices and right-hand side are produced by ACTRAN [5]. The problem to be solved has the
form (1) and n = 13,623. The frequencies of interest are w = 600, ...,1000. The problem is shifted with
a shift o = 600. We solved this problem by running 40 iterations of the Algorithms 2.1 and 2.2. The
computations were carried out in ACTRAN on an IBM RS/6000. In this section we compare the quality
of the results. Figure 1.a shows the residual norms

pWw) := (K +0C + 0> M) (K + wC + W’ M)E(w) — fo — wfi)ll (8)

for both methods in function of w. We notice no visual difference between the residual norm curves for
both algorithms. Figure 1.b shows the error on the recurrence relation (4)

v\ _( Vit ‘
”S( wj ) ( Wi )ﬂje’

llvi — Wjt1H el (10)

for Q-Arnoldi for j = 1,...,m. We notice that the recurrence error norm curves for both algorithms
show no visual difference. Also note that (10) is significantly smaller than (9). Note that x(H,,) ~ 967.5,
which indicates that we expect the Q-Arnoldi algorithm to be as accurate as the Arnoldi algorithm.

In Table 1, we compare timings using the direct method and the Arnoldi and Lanczos method for the
frequencies w = 600, 605,610, ...,1500. The Arnoldi and Lanczos method use a subspace of dimension 40.
The Lanczos method requires two more factorizations, i.e. new shifts o because of loss of orthogonality
[10].

9)

for both methods and
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