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ABSTRACT 
We want to test by ultrasonic waves the adhesion of an aluminum/adhesive/aluminum structural bond. 
Thus, we compare the guided modes for the tri-layer model and a rheological model of the adhesive 
layer (geometrical interface with a uniform distribution of springs with mass). A comparison between 
the two models shows a good agreement for the adhesive thickness smaller than a characteristic 
value and allows us to define the stiffnesses and the mass of the springs.   
 
1. INTRODUCTION 
 
 In the literature, rheological models are used to modelize the tri-layer interfaces [Mal, 1989], 
[Rocklin, 1991], [Kundu, 1997].  In this paper, we want to study the influence of the inertia on the 
validity limits of such models.  Firstly, we consider the exact model, i. e. a tri-layer with continuity of 
stresses and displacements at each interface. Secondly, we modelize the adhesive layer by a uniform 
distribution of longitudinal and transversal springs with mass. Then, the boundary conditions at the 
interfaces are the springs-mass conditions. The parameters of the adhesion are the stiffnesses and 
the mass of the springs. A dispersion curves comparison shows the existence of a relative adhesive-
thickness value beyond which the springs-mass rheological model is not sufficient to modelize the tri-
layer. A cutoff-frequencies comparison shows a frequency dependence of stiffnesses and mass. This 
dependence is unusual and means that the rheological model must be adapted according to the 
considered frequency range. In particular, for small relative adhesive-thicknesses or/and low 
frequency, we find the definition of stiffness constants and mass used in the literature.  
 
 
 
2. TRI-LAYER MODEL 
 
We consider a tri-layer structure composed of two identical metallic plates ( 1S , 3S ) joined by an 

adhesive ( 2S ). We denote iρ  the mass density of i-medium ( 2,1i = ), Lic  the corresponding 

longitudinal wave velocity, Tic  the transversal wave velocity, h2  the thickness of 1S  and 3S  and d  

the thickness of 2S . The structure being symmetrical, we were only interested by the substructure 

21 SS − . We consider the case of plane deformations in the Oxz  plane (Ox-axis is the medium line of 



1S  and oz-axis is taken positive up-down). In plane deformations, the scalar potential and the unique 

component of the vectorial potential are written, for the 1S and 2S  layers: 
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where LR  and TR , the reflection coefficients of the longitudinal and transversal waves inside the 
adhesive layer, are given by : 
 

dikTdikL 2Tz2Lz eR,eR −− ±=±= .  

The boundary conditions are the free surface conditions at hz −= , the continuity of stresses and 
displacements at the hz = . At dhz +=  and taking into account the structure symmetry, the 

boundary conditions are substituted by LR  and TR  coefficients. Thus, we obtain a 66×  system in 
which the zeros of the determinant correspond to the guided waves into the structure. This system 

depends on LR and TR so we obtain four characteristic equations, defining four families of dispersion 
curves, respectively denoted (-,-), (-,+), (+,-) and (+,+), where the first sign in the parenthesis 

represents the sign of LR and the second one, the sign of TR .   

We introduce the dimensionless quantities: hk2 e=ω , exx kkk = , eLziLzi kkk = , 

eTziTzi kkk =  and the notations eLiLi kkn = , 2L21L1L ccz ρρ= , 2T21T1T ccz ρρ=  ( i=1,2). 

The wave number ek  is defined by watere ck ω= . This choice is made for two reasons: (i) no waves 
in the structure are accorded any privilege, (ii) the definition of the dimensionless quantities may be 
extended to the case of the immersed structure. 

When 0k x = , the characteristic equations are simplified. Therefore, we obtain the cutoff-frequencies 
as solutions of:  
 

( ) 0)nsin(h4dntgz)ncos( 1L2LL1L =ωω−ω , 

( ) 0)nsin(h4dngcotz)ncos( 1L2LL1L =ωω+ω , 
 

( ) 0)nsin(h4dntgz)ncos( 1T2TT1T =ωω−ω , 

( ) 0)nsin(h4dngcotz)ncos( 1T2TT1T =ωω+ω . 
 

For an aluminum/epoxy/aluminum tri-layer with the acoustical characteristics s/m6380c 1L = , 

s/m3100c 1T = , 3
1 m/kg2800=ρ , s/m1882c 2L = , s/m1086c 2T = , 3

2 m/kg1160=ρ  and 

s/m1500cwater = , the dispersion curves are plotted between )20,0(∈ω  and )1,0(k x ∈ . Their 

behavior depends on the parameter h2d .  

• For h2d  between 510− and 2105.3 − , the adhesive layer is negligible and the acoustical waves 

“see” only a h4  thickness aluminum plate. The cutoff-frequencies remain relatively around those of a 

h4  thickness aluminum plate and, for 0k x ≠ , there is an undoubling of modes.  

The curves of the (-,-) family are almost fixed when h2d  varies. They correspond to the dispersion 
curves of a h2  thickness aluminum plate. The curves of (+,-) and (-,+) families get closer to those of a 

h4  thickness aluminum plate. The (+,+) family curves are specific to the tri-layer. 

• For h2d between 2105.3 − and 1102 − , the adhesive thickness is significant enough to isolate the 
two aluminum plates as well as assure their coupling. The cutoff-frequencies are now centered around 



those of a h2  thickness aluminum plate. We still observe, from every cutoff and for 0k x ≠ , an 

undoubling of modes. In fact, the doubles are two by two regrouped around one mode of a h2  
thickness aluminum plate. These regroupings may be interpreted as a quadrupling of modes around 
the h2  thickness aluminum plate modes (see figure 1). 
Moreover, at low frequency, we observe two doubles, one longitudinal and another transversal, whose 
specificity is that one of their dispersion curves is vertical for weak angles of propagation, so we name 
them vertical modes. The interest of these modes is essentially experimental because of their low 
angular sensibility. A longitudinal vertical mode had already be observed for an 
aluminum/water/aluminum tri-layer [Lenoir, 1997]. 

Figure 1 – Dispersion curves of a tri-layer structure for 110h2/d −= . 
• For h2d  tending towards 1, the adhesive layer has progressively the same role as that of the 
aluminum plates. The quadrupling disappears and the dispersion curves are more complex, in 
particular, the Lamb modes of the adhesive layer begin to be observed. 
 
 
 
3. SPRINGS MODEL WITH INERTIA 
 

We consider the same tri-layer structure as before but the 2S -adhesive layer is now substituted by a 

geometrical surface 0z =  and the adhesion process is modelized by an uniform distribution of 

longitudinal and transversal springs with inertia. We respectively denote their stiffnesses by m
LK  and 

m
TK  and their mass by m . 

As previously, the components of the potentials are written, for the 1S  and 3S  layers: 
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The boundary conditions require to obtain the dispersion equation are the free surface conditions at 

h2z ±=  and at 0z = , we must write: 
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where [ ]1
z

1
x u,0,u , [ ]3

z
3
x u,0,u  and [ ]int

z
int
x u,0,u  are respectively the displacement vectors in 1S , 3S  

and of the mass m . 
Thus, we obtain a 88×  system, in which the roots of the determinant yield the guided modes into the 
structure. For numerical calculation, we introduce the same dimensionless quantities as before, to 

which we add the following: ))2(h2(KK 11
m
L

m
L µ+λ= , )h2(KK 1

m
T

m
T µ= and h2mm 1ρ= . 

If 0k x = , the dispersion equation may be factorized in two parts (one transversal and another 
longitudinal) that give the cutoff-frequencies of the guided waves. 
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where ( )1L,1T1L,1T nsins ω=  and ( )1L,1T1L,1T ncosc ω= . 

We remark that the first parenthesis only depends on the spring stiffnesses. The second one 

principally depends on the mass so, if we set 0m = , we find the rheological model without mass 
[Vlasie, 2002]. 

The dispersion curves are presented for two aluminum plates and plotted between )20,0(∈ω  and 

)1,0(k x ∈ . The behavior of the dispersion curves depends on the stiffnesses and the mass of the 

springs. To illustrate their form we present the dispersion curves for 4.0K m
L = , 4.0K m

T =  and 

0527.0m =  (figure 2). We notice an undoubling of modes around these of a h2  thickness aluminum 
plate. Moreover, at low frequency, we observe two vertical modes, one longitudinal and another 
transversal.  

Figure 2 - Dispersion curves for 4.0K m
L = , 4.0K m

T =  and 0527.0m = . 
 

 
 
4. COMPARISON BETWEEN THE TWO MODELS 
 
The comparison between the cutoff-frequencies equations of the two models gives:  
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We observe a frequency dependence of parameters which means that the rheological model must be 
adapted according to the considered frequency range. Moreover, we observe that the longitudinal and 
transversal springs do not have the same mass. Initially we do not have considered this case but the 

decoupling effect at 0k x =  allows us to find this result. We also notice that the longitudinal and 
transversal masses depend on the corresponding stiffnesses.  
When the cotangent argument is smaller then unity (which is verified when 1h2d <<  and/or 

1<<ω ), a first order expansion gives: 
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ρ= . In this case we find the definition of the stiffness constants and mass used in the 

literature [Rocklin, 1991].  
 

Thus, for ( )25 105.3,10h2d −−∈  and ( )20,0∈ω  a good agreement between the guided modes of 
the springs model with mass and the families (-,+) and (+,-) of the tri-layer model is obtained using 
approached values of the parameters and we can define an uniform rheological model for this 
frequency range.  

For ( )12 102,105.3h2d −−∈  and ( )20,0∈ω  the agreement using the approached values is 
reduced at the two modes which have the same cutoff-frequencies as the vertical modes. For the 
other modes, it is necessary to consider exact values of the rheological parameters. For some 
frequency ranges, the cotangent function assumes negative values and it is not possible to define, 
even locally, a rheological model. 
For h2d  tending towards 1, the dispersion curves of the two models progressively diverge and it 
becomes difficult to define rheological model even for the low frequency modes. 
We have seen that half of the cutoff-frequencies only depends on the stiffnesses and the other half 
depends on the masses. In the table 1, we compare the exact model with the modes depending on the 

stiffness m
LK . In the table 2, we compare the tri-layer model with the modes depending of the mass 

Tm . The numerical results show the differences between the cutoff-frequencies values calculated 
using the exact and the approximated values of the stiffnesses respectively the masses. 
 
 
 
5. CONCLUSIONS 
 
We have modelized an aluminum/adhesive/aluminum structure. We have compared the guided 
modes, especially their cutoff-frequency for the rheological model with mass and the tri-layer model.  
 
Table 1 – Influence of the exact expression of the stiffness constant upon the cutoff-frequencies 

Tri-layer model  Rheological model with mass 

h2d  layertri−ω   
exact

m
LΚ  exactω   

app
m
LΚ  appω  

10-5 6.6805  7212.2 6.6805  7212.2 6.6805 
10-4 6.6722  721.22 6.6722  721.22 6.6722 
10-3 6.5900  72.122 6.5900  72.122 6.5900 
10-3 19.7704  72.122 19.7704  72.122 19.7704 
10-2 5.8762  7.2122 5.8760  7.2122 5.8763 
10-2 17.8042  7.2102 17.8044  7.2122 17.8071 
10-1 3.2235  0.7172 3.2236  0.7212 3.2306 
10-1 14.1733  0.6428 14.1734  0.7212 14.2638 

2.5 10-1 2.1648  0.2840 2.1651  0.2884 2.1802 
2.5 10-1 13.4832  0.0898 13.4832  0.2884 13.7415 
4 10-1 1.7322  0.1758 1.7329  0.1804 1.7541 
4 10-1 13.0708  negative -  0.1804 13.6025 



Table 2 – Influence of the exact expression of the mass upon the cutoff-frequencies 
Tri-layer model  Rheological model with mass 

h2d  layertri−ω   
exactm  exactω   

app
m

L,TK  appm  appω  

10-5 6.4936  0.414 10-5 6.4936  10182 0.414 10-5 6.4936 
10-5 12.9871  0.414 10-5 12.9871  10182 0.414 10-5 12.9871 
10-5 19.4807  0.414 10-5 19.4807  10182 0.414 10-5 19.4807 
10-4 6.4934  0.414 10-4 6.4934  1018.2 0.414 10-4 6.4934 
10-4 12.9868  0.414 10-4 12.9868  1018.2 0.414 10-4 12.9868 
10-4 19.4803  0.414 10-4 19.4803  1018.2 0.414 10-4 19.4803 
10-3 6.4922  0.414 10-3 6.4922  101.82 0.414 10-3 6.4922 
10-3 12.9845  0.414 10-3 12.9845  101.82 0.414 10-3 12.9845 
10-3 19.4765  0.414 10-3 19.4765  101.82 0.414 10-3 19.4765 
10-2 6.4802  0.410 10-2 6.4802  10.182 0.414 10-2 6.4801 
10-2 12.9602  0.410 10-2 12.9602  10.182 0.414 10-2 12.9601 
10-2 19.4402  0.410 10-2 19.4402  10.182 0.414 10-1 19.4398 
10-1 6.3551  0.0376 6.3493  1.0182 0.414 10-1 6.3320 
10-1 12.6335  0.0298 12.5829  1.0182 0.414 10-1 12.1758 
10-1 18.5472  0.0231 18.108  1.0182 0.414 10-1 15.13 

2.5 10-1 5.998  0.0614 5.999  0.4072 0.1036 5.2273 
2.5 10-1 9.2915  0.0411 9.2936  0.4072 0.1036 7.1684 
2.5 10-1 13.32  negative -  0.4072 0.1036 13.1505 
4 10-1 5.0629  0.0754 5.0635  0.2546 0.1657 3.5805 
4 10-1 7.1653  0.0542 7.1645  0.2546 0.1657 6.7206 
4 10-1 16.8986  0.0075 16.9347  0.2546 0.1657 13.0771 
4 10-1 19.799  0.0067 19.7979  0.2546 0.1657 19.5384 

 
The comparison between the dispersion curves allows us to deduce the validity limits of the 
rheological model. The analytical shape of solutions may be studied as a function of springs 
stiffnesses and mass. A comparison between the equations that give the cutoff-frequencies for the two 
models allows us to define the equivalent stiffnesses and masses, both of which are frequency 
dependent. This dependence means that the rheological model must be adapted to the considered 
frequency range. A theoretical/experimental comparison is planned. It would consist of evaluating the 
spring stiffnesses and maybe the masses. A comparison with the exact values of these parameters is 
interesting for the quality estimation of the interfaces and for the initiation of numerical simulations of 
the interface damages [Champaney, 2001]. 
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