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ABSTRACT 
A spectral element method is described which enables reduced wave equation problems 
defined in regular, arbitrary length regions to be solved as a set of coupled problems over 
neighbouring domains. A combination of trial functions are considered, namely the specific 
eigenfunctions of a differential operator and a set of hierarchical polynomials. The coefficients in 
the representation of the acoustic pressure are obtained by imposing continuity across element 
interfaces and including the given boundary conditions and sources. Accurate approximations 
are obtained for computations of local perturbations of the ambient fluid and a study of an 
optimal non-reflecting boundary is discussed. 
 
 
 
INTRODUCTION 
 
A variational formulation for the two--dimensional Helmholtz equation in an acoustic waveguide 
is presented. The objective is to calculate sound transmission through local perturbations 
located either within the fluid or at the fluid boundary. The case considered is that of wave 
propagation from a monofrequency point source in a waveguide that is assumed to be straight 
and arbitrarily long with uniform rectangular cross--section. Characterisation of an absorbing 
boundary is modelled by a locally reacting impedance condition. Parameters governing the fluid 
wavespeed are also allowed to vary along the longitudinal direction of the waveguide. The 
proposed approach can provide accurate solutions over domains of arbitrary length in a certain 
direction; namely, an infinite waveguide solution, a semi--infinite waveguide solution and a 
solution within a finite rectangular region.  
 
 
The problems studied here are specific to waveguides whose fluid domains only vary in width. 
For general domains there has been a significant effort in improving the numerical modelling 
capability for linear steady--state acoustic problems in two and three dimensions for interior or 
exterior acoustic domains. Numerical methods for solving reduced wave differential equations 
can be categorized according to their local or global nature. The most general local approaches 
are the finite element method (FEM) and the boundary element method (BEM). These discrete 
methods rely on spatial discretizations that are small compared to the wavelength of the 
problem. However, these are methods well suited to general wave propagation problems. For 
finite and boundary element methods the underlying approximating functions are usually 
polynomials with compact support in the acoustic region. For high wavenumbers this choice 



leads to systems of equations with a large number of degrees of freedom. Whereas, for acoustic 
waveguide problems a judicious choice of basis functions, which have an underlying global 
nature, may lead to significantly less number of degrees of freedom. For the new spectral 
element method presented here the basis functions inherently possess some of the wave nature 
of the acoustic field.  Consequently, for acoustic problems posed for a waveguide geometry the 
spectral methods require considerably less degrees of freedom than the discrete methods. 
 
 
The spectral finite element method (SFEM) applied to waveguide problems, referenced in [ 1 ] –
[ 3 ] can be viewed as a merger of the dynamic stiffness method and the finite element method. 
Specifically the method is based on a variational formulation for non-conservative motion in the 
frequency domain. The SFEM has been used to study vibration in beam frame--works [ 1 ], 
beam--stiffened railway cars [ 2 ] and for fluid-filled pipes [ 3 ]. Finnveden used the spectral pipe 
elements for various cases from assessment of approximate theory, [ 4 ], to experimental SEA 
calculations, [ 4 ]. Use of a variational formulation for the spectral method provides a natural 
basis for approximations and a simple tool for combination with standard finite elements. In the 
following spectral finite elements are combined to solve a waveguide problem, and in particular 
a possible optimal local boundary condition is presented that approximates the true non-local 
boundary condition at an interface for a half-space. Optimal local boundary conditions have 
been discussed comprehensively by Givoli in [ 5 ] and [ 6 ], the ideas used here differ in that a  
reflection coefficient is minimised for almost all angles for all plane-wave incidence. 
 
 
 
FINITE ELEMENT SOLUTION 
 
In acoustic waveguides with constant cross--section the solutions of the equations of motion, {\it 
i.e.} Helmholtz equation, are exponential terms describing wave propagation in an axial direction 
with corresponding cross--sectional modes. Polynomials are derived using a procedure 
developed by Finnveden in [ 3 ] to describe fluid motion in the cross--section of pipe structures. 
The hierarchical polynomials appear in the trial functions used in the approximation for acoustic 
pressure, 
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Inserting the approximating functions into a variational formulation for the Helmholtz equation, 
see [ 7 ] for details , evaluating certain derivatives and integrals in the z-direction, one obtains 
an expression for the dynamic stiffness matrices : 
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assuming an absorbing condition at the upper and lower boundaries. After a little matrix algebra 

a system, ( N N´ ), of second order differential equations for the unknown function 
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Since the system of equations (1.4) has constant matrix coefficients the solution may be written 
in the form 
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where X is a vector representing wave amplitudes and λ wavenumbers determined by a 
suitable matrix eigenvalue problem. Using the definition for propagating waves in (1.5) and 
polynomials in the z-direction it is possible to form an appropriate trial or wave influence function 
over a finite axial length L x L- £ £ .  
 
 
 
Non-reflecting boundary condition 
 
The application of the spectral finite element method on unbounded exterior domains involves a 
domain decomposition of the exterior region. On an entirely artificial boundary at 0z = , it is 
possible to prescribe artificial boundary conditions (ABC) that approximate the exact non-local 
boundary condition, [ 5 ] and [ 6 ].  
 
 
Consider a plane wave incP incident on the boundary 0z =  at angle θ from the normal. Writing 
the addition of the incoming and scattered waves as 
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it is possible to associate the reflection coefficient with a generalised thM local boundary 
condition at 0z = as  
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It is also possible to recover the reflection coefficient 0R from the zero-order or cr boundary 

condition, ( 0,0a ik= ), and after a little manipulation the well-known expression for the reflection 

coefficient is obtained, 
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Now, reformulating the generalized boundary condition (1.7) into a form in which the general 
reflection coefficient may be established:   
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Minimizing ( )MR q under a suitable norm it is possible to find rational values for the unknown 

coefficients ,i ja . In turn the resulting coefficients in equation (1.7) may be incorporated into the 

finite element model (1.2) and (1.3). The following two examples give some sense of the scope 
of the method for a waveguide with varying density and a simple exterior problem. 
 
 
 
RESULTS 
 
 
 
Density variation 
 
In this example the Helmholtz equation is solved for an infinite waveguide with dimension 

0.5 0.5z m- £ £  including a rigid boundary where the density of the fluid is allowed to vary 

from ambient state 31.21kgmr -= over the region, 9 10x m£ £  to the right of the source. 
Absorbent material also covers the upper and lower boundaries of the inhomogeneous region 

and the source is located at the lower boundary ( )0, 0.5-  at fixed frequency excitation 220 Hz. 

Figure 2 shows the absolute pressure along the waveguide just below the centre line at z = -0.3. 
The left hand figures (a)-(c) show pressure variation for a total rigid waveguide and the right 
hand figures, (d)-(f) show variation in density with absorbing material. 

 
 

Figure 2. Rigid waveguide (a) ñ = 0.21 kg m-3 (b) ñ = 1.21 kg m-3 (c) ñ = 10.21 kg m-3and 
absorbing waveguide 1/100ζ =  (d) ñ = 0.21 kg m-3  (e) ñ = 1.21 kg m-3  (f) ñ = 10.21 kg m-3 

 
 

 



An optimal boundary condition 
 
As a simple example to validate the high order, local,non-reflecting boundary condition above a 
point source was located at a rigid boundary x=0m and z = -4m in an acoustic half-space. By 
the method of images the exact solution is a sum of two Hankel functions of the first kind of zero 
order. For the numerical solution two waveguide layers were assembled with a depth of 2m 
each. Furthermore three coefficients, including the zero order coefficient   
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were incorporated into the spectral finite element solution via equation (1.3). Figure 3 shows 
good agreement between the analytic and numerical solutions across the waveguide domain for 
non-dimensional wavenumber 17kh = at x=3m.  
 

 
Figure 3. Real and imaginary parts of finite element solution (dash-dot) to acoustic half-space 

problem versus the analytic solution (solid). 
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