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Abstract

In this paper we study the multi-level fast multipole solution of the boundary integral for-

mulation for the Helmholtz equation exterior to a closed curve in 2D. We employ the uniquely

solvable formulation due to Burton and Miller, involving the hypersingular operator, the nor-

mal derivative of the double layer potential. We state an outline of the derivation of error and

O
(

n ln2 n
)

complexity analysis of the method. We present some numerical results which seem

to support the theory.

1 Background

In Boundary Element Methods (BEM), the linear partial differential equation of interest is reformu-

lated as a Boundary Integral Equation (BIE), which is then discretised using Finite Element (FE)

techniques. Boundary element methods partition the boundary into n elements, generally resulting

in an n×n system of linear equations. Gaussian elimination type solvers require O
(

n3
)

arithmetic

operations. In general, the use of an iterative solver, possibly with suitable preconditioners, results

in an O
(

n2
)

solution. However, these methods cannot improve on this complexity estimate, since

simply forming the coefficient matrix requires O
(

n2
)

arithmetic operations.

1



The so-called ‘fast methods’, such as wavelet and multipole expansions and panel clustering, im-

prove on the O
(

n2
)

complexity estimate. The whole coefficient matrix is not formed. In its

place, a sparse approximation or a sparse approximate decomposition is used. The fast methods

then employ an iterative solver which can be implemented using only matrix–vector multiplication,

without needing to have access to the full matrix, which in general isn’t available. Here, we use

a Galerkin approximation with fast multipole exapnsions and employ an iterative solver from the

Krylov subspace class.

Denote by Ω+, the exterior of the closed curve Γ. The field of time-harmonic acoustic scattering

from Γ+ is described by the Helmholtz equation with wavenumber k = ω/c, where ω is the frequency

and c the sound speed in Ω+ . We consider the case of the Neumann boundary condition, relating

to sound hard structures, and for uniqueness impose a suitable condition on φ ‘at infinity’, such

as the Sommerfeld radiation condition. This problem now has a unique solution as stated in the

theorem below [5, Thms 7.6.1,7.6.2].

Theorem 1.1. Let k > 0. Then, for s > − 1
2 , the exterior Neumann problem

(∇2 + k2)φ(p) = 0, p ∈ Ω+

∂φ

∂n
(p) = f(p) ∈ Hs(Γ)

lim
r→∞

r
1

2

(

∂φ

∂r
− ikφ

)

= 0































has a unique solution φ ∈ H
s+3/2
loc (Ω+).

For definitions of the Sobolev spacesHs(Γ) andHs
loc(Ω+) see [5, 6]. The free space Green’s function,

also known as the fundamental solution, for the two-dimensional Helmholtz equation is

Gk(p,q) =
i

4
H0(k‖p− q‖),

where H0 is the Hankel function of the first kind and order zero and ‖p−q‖ is the distance between

field or boundary points p and q. Here, we employ the uniquely solvable direct boundary integral

reformulation of the Helmholtz equation due to Burton and Miller [4]

(

−
1

2
I +Mk + iγNk

)

φ =

(

Lk + iγ

(

1

2
I +MT

k

))

∂φ

∂n
, p ∈ Γ, (1.1)
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where γ is a positive real coupling parameter and the operators are defined as:

(Lku)(p) =

∫

Γ
Gk(p,q)u(q) dΓq, (MT

k u)(p) =
∂

∂np

∫

Γ
Gk(p,q)u(q) dΓq,

(Mku)(p) =

∫

Γ

∂Gk

∂nq
(p,q)u(q) dΓq, (Nku)(p) =

∂

∂np

∫

Γ

∂Gk

∂nq
(p,q)u(q) dΓq.

In general we choose γ = 1
k to improve the conditioning of the equation (1.1), as suggested in [2].

For the Neumann problem, equation (1.1), viewed for convenience in shorthand notation Aφ = g,

is first solved to find φ on Γ. Once the Cauchy data (φ, ∂φ/∂n) on Γ is known the solution to our

exterior problem can be found using the Helmholtz representation formula

φ(p) =

∫

Γ

∂Gk

∂nq
(p,q)φ(q) dΓq −

∫

Γ
Gk(p,q)

∂φ

∂nq
dΓq, p ∈ Γ+.

2 Multipole Expansion

At the heart of multipole algorithms is the approximation of the kernel of the boundary integral

operator A, by a separable or degenerate kernel of the form:

K(p,q) ≈
L
∑

l,m=1

fl(p)blmgm(q) = f(p)TBg(q) (2.2)

where f and g are L−vectors and B is an L × L matrix independent of (p,q). If the separable

approximation (2.2) was valid everywhere, then it is straightforward to show that the n×n boundary

element matrix A, with Ai,j =< Aψi, ψj >, where {ψi} are the Galerkin basis functions, could be

approximated by a rank L decomposition UBV , where U is an n × L matrix and V and L × n.

Therefore, the formation of matrix-vector product Ax, essential at every step of the iterative

solution of the boundary element discretisation can be approximated by U(B(V x)) at the cost of

2nL+L2 operations in place of n2. Note that it is not necessary to form elements of A, only those

of U, V and B.

Unfortunately, for problems with Green’s function type kernels, which are singular at p = q,

approximate separable expansions of the form (2.2), with small to moderate expansion length L,

can only be found provided p and q are in far-away clusters.
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Central to the theory behind the fast multipole methods for the Helmholtz equation is Graf’s

addition theorem [1, (9.1.79)], which is used in the derivation of kernel expansion for the ‘basic’

kernel of Lk, all others following from this; see [7].

Theorem 2.1. Let L be an odd integer. For p, c,q,d ∈ R2 with ‖(q − d) − (p − c)‖ < ‖c − d‖,

and k a positive real i
4H0(‖k(p− q)‖) = fTBg +RL, where f and g are the L-vectors









































(−1)MJM (k‖p− c‖)e−iMθp−c
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−J1(k‖p− c‖)e−iθp−c
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,

respectively, with M defined by L = 2M + 1. B is the L× L Toeplitz matrix

i
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in which we have written Hl for Hl(k‖c− d‖) and ω for eiθc−d . The remainder term is given by

RL =
∑

|m|>M

Hm(x)e
imθxJm(y)e

−imθy

+
∑

|m|6M

Hm(x)e
imθx

∑

|l|>M or |l+m|>M

Jm+l(u)e
−i(m+l)θuJl(v)e

ilθv .

with x, y, u and v defined by x = k(c−d), u = k(q−d), v = k(p− c), y = k(q−d)− k(p− c).
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It is proved rigorously in [7], using theorem 2.1, that for the practical case where kh ∼ 1, multilevel

fast multipole algorithms can solve the problem to within the level of discretisation error in only

O
(

n log2 n
)

arithmetic operations.

3 Numerical Experiments

We use the multi-level fast multipole algorithm to solve the exterior Helmholtz equation with

Neumann boundary conditions for large values of k and hence large n. We use the hypersingular

Burton and Miller reformulation (1.1), discretised by a Galerkin method with piecewise linear basis

functions. The boundary Γ is taken to be an ellipse x2

a2 +
y2

b2
= 1 with length 2π and with b = 2a.

The test problem was generated by placing a point source of unit strength at the point p = (0.0, 0.5)

within Γ. The iterative solver GMRES was used for the solution of the boundary element equations,

to within the level of discretisation error; see also [8, 3]. The results are summarised in Table 1. For

n > 210, the CPU time and memory requirements for the standard method were estimated since

they were beyond the capabilities of our computer. For example, for n = 215, the estimated 221

seconds of CPU time is 582 hours, and the estimated memory required is 17 Gigabytes. As can be

seen from Table 1, use of the fast method does not add to the discretisation error of the boundary

element method. However, CPU time and memory requirements are reduced from O
(

n2
)

to almost

O (n). This is consistent with the predicted O
(

n log2 n
)

complexity estimate.
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