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Abstract

Sound propagation in complex acoustic environments such as cities is in this paper
studied by using the Boltzmann equation for stochastic molecular motion in a perfect
gas. The equation is solved using a finite element approach, where the city is divided
into its relevant parts such as roads, different building structures and recreational
areas. Each part is characterized through its mean building size, mean absorption
properties and the density and frequency spectrum of the sources present. The
results from this method are not pointwise exact, but instead intended as a mean
value of the background noise level.

1 INTRODUCTION

Noise propagation from simple sources is a well-studied subject in acoustics. A mul-
titude of analytical models exist for calculating the noise levels from monopoles (see
for example [1]). The models include different grades of complexity, e.g., diffraction
around corners, finite ground impedance or a varying ground profile. However, the
major part of these models only include a single source. In principle it is possible to
superimpose the fields from several sources, but this can be a tedious assignment,
since the geometry must be given in relation to each source.

Previous studies have shown that common prediction methods can give substantial
errors in shielded situations [2]. This is probably caused by the fact that only the near-
est road is normally assumed to contribute to the noise level. Especially in strongly
shielded situations this hypothesis would be incorrect.

In a real city there are often a vast amount of sources, e.g., different kinds of fans
and sources related to vehicle transportation. It is not feasible to handle this large
number of individual sources separately with analytical methods. Numerical methods,
like the Finite Element Method (FEM), are better adapted to this situation. However,
when considering outdoor noise propagation the sources that are judged to be of
importance are often distributed over a large area, which causes the numerical model
to get very large in terms of storage and solution time. The calculation time is also



rapidly increasing with frequency, since the element size in the discretization is linked
to the wavelength. A possible alternative is then to treat the noise propagation as
a form of diffusion or transportation process. By using these kinds of models it is
possible to use elements of larger size, and hence it is possible to calculate over
larger areas. A simple diffusion model can be achieved through applying the heat

equation
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to the propagation problem. This approach gives however not accurate results [3].
Better results can be achieved with a method based on transport, such as the Boltz-
mann collison equation for molecular dynamics in a perfect gas. Here this equation
has been applied to sound propagation in cities. In transport applications sound is
assumed to be transported in small packages; sound particles or phonons.

2 THEORETICAL BASIS OF THE METHOD

The Boltzmann collision equation is normally used for calculation of molecular dy-
namics. In order to use it in acoustics some modifications are needed. In its most
general form the Boltzmann equation can be written as:
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This equation describes the dynamics of the particles inside the element drdv in
phase space, where r = (x,y,2),v = (ve, vy, v;)). The distribution function f de-
scribes the density of particles in phase space. The vector F describes any forces
acting on the particles, and in most acoustical problems it can be set to zero. The
value on the right hand side corresponds to the net flow of particle densities in and
out of the element drdv.

The main difference between the Boltzmann equation for acoustics and for molecular
dynamics lies in the right hand side. In molecular dynamics the molecules collide and
are hence scattered, while in acoustics sound particles superimpose onto eachother,
which gives no inter-particle scattering.

The Boltzmann equation for noise transport with isotropic scattering can be derived
as (from [3]):
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In this equation |v| = cis the speed of sound and X is the mean free path length of the
sound particles. In the derivation of this equation, the propagation distance for the
phonons without colliding with an obstacle is assumed to obey a negative exponential
distribution. The mean free path length for the phonons can be calculated as
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where n is the density of obstacles, i.e., houses or trees, and () is the average scat-
tering cross section for the obstacles.

The phonons are assumed to propagate over a flat plane loosely built with houses.
The houses are assumed to be random in position, orientation and size, but the prob-
ability distributions for these parameters should still give a meaningful average inside
a given domain. A city can be thought of as a set of domains with different param-
eters. Each domain represents an area of specialized building density or building
size and can be used to characterize different kinds of urban or suburban city en-
vironments, including parks or recreation areas. However, the house concentration
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Figure 1: Sound pressure level as a function of frequency at Hagerstensvagen, Stock-
holm. The two upper curves correspond to directly exposed positions, while the other
curves represent positions with varying degrees of shielding.

is restricted to be relatively low. This restriction comes from the definition of the in-
finitesimal element in phase space (drdv) that has been used in the derivation of the
Boltzmann equation (see [4] for details).

The concept of mean free path length is relying on constant statistical parameters for
the whole domain, i.e., the city. Thus Eq. 3 is not exact for varying parameters, but
since the distance involved in sound propagation through cities often is large com-
pared to the value of the mean free path length it is possible to use this approach as
a first approximation. Certainly the results close to the boundaries of the subdomains
will be inaccurate, but since the aim of the present model is to achieve an average
background noise level this drawback is not judged to be of critical importance. The
validity of this approach will be studied in further work with the present model.

Eq. 3 can be further simplified by assuming the geometry to be two-dimensional, by
assuming steady-state condition, and by replacing the velocities in z- and y-direction
with polar representations. All sound particles travel with the speed of sound ¢ and
only the direction of propagation ¢ is hence of importance. This leads to the simplified
equation:
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In this equation f = f(r, ), where r = (z,y). Interesting is that this equation is not
dependent on the speed of sound.

The present model can be used to calculate the average noise levels in a part of
a city. The boundary conditions for the region of interest should be adapted to that
situation. Neumann boundary conditions are used in the z- and y-direction, since the
calculation domain boundaries have no fixed noise levels. Because of the definition
of ¢ as an angular direction, cyclic boundary conditions (f(r,27) = f(r,0)) are used
in the w-direction.

There is no direct dependency on frequency in Eq. 5, but the frequency can affect
the results indirectly through the parameters A and «. However, noise levels mea-
sured close to roads and in shielded areas have shown relatively constant frequency
contents. Figure 1 shows measured results for various degrees of shielding, from
directly exposed positions to positions inside closed courtyards, at Hagerstensvagen
in Stockholm. The frequency spectrum indicates that it may be possible to calculate
noise levels in cities without regarding frequency dependency. The possibility of this



assumption will be studied in further work.

3 SOLUTION METHOD

In this section a solution method for Eq. 5 based on the variational finite element
method will be outlined. The used method is often referred to as continuous Galerkin
method of order 1 (cG1) [5]. Both sides of Eq. 5 are multiplied with a known contin-
uous test function ®(r, ¢) and integrated over the whole domain of interest 2. The
domain € is now discretized in a three-dimensional mesh. For simplicity, the 3D mesh
is derived from a 2D mesh by translation in the third dimension. By using a fixed dis-
cretization in the third dimension, the volume is built up from prism-shaped elements
like in Figure 2. It is also possible to achieve tetrahedral elements by using a trans-
lation procedure, but this is more cumbersome. An example of a 2D mesh for a part
of the city of Stockholm is shown in Figure 3. The area is roughly 2.2 x 3.2 km and
the final 3D mesh holds 5901 nodes and 9702 prism elements. The test functions
used here are first order polynomials which are adapted to the used elements. For
one single node (z;, y;, ¢;) the test function can be written as:
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The parameters k., h, and h,, are the dimensions of the reference element in Figure
2. Each element is built up from six test functions:
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Using the test functions in Eq. 6 it is possible to write a discretized version of Eq. 5:
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The distribution function can now be replaced by its interpolant. The interpolant is
built from basis functions like in Eq. 6:
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Figure 2: A prism-shaped reference element built up through a translation of a 2D mesh.



Figure 3: Left: A simplified figure of the roads important for the traffic noise around
Hagerstensvagen in Stockholm. Right: A 2D mesh of the area (843 nodes and 1617
triangular elements).

where f; is the value of the solution at node j. By inserting the expressions for the
test functions (Eq. 6) and the interpolant for f (Eq. 9) an expression suitable for
numerical evaluation is achieved:
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The integrals in Eg. 11 can now be evaluated analytically. The evaluations must be
done by integrating for all different combinations of 7,5 and k. The contribution from
each prism element in Eq. 8 can thus be interpreted as a 6 x 6 matrix of contribu-
tions to nodes. An efficient way do this numerically is to evaluate the integrals on a
reference element and then map the reference element onto each element. The final
equation system is assembled element by element using the submatrices described
above. The equation system can easily be solved with standard methods.

The development of the present model is not finished, but initial tests have shown
promising results and the calculation times are fairly short.



4 CONCLUSIONS AND FURTHER WORK

The present model is promising for calculating the average background noise level
in a part of a city. The approach by using a transport equation instead of the wave
equation presents possiblities to calculate over larger areas, like cities. The basic
mathematics of a FEM solution of the Boltzmann collision equation have been pre-
sented in this paper. The model is under development and no results are therefore
available at the moment. In future work the model will be used to study the impor-
tance of long-distance sound propagation from distributed sources like roads. The
results from this model will also be used in combination with short-range models to
predict noise levels in cities.
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