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ABSTRACT
Parallel iterative solutions of acoustic scattering in the frequency domain are developed using
exact Dirichlet-to-Neumann (DtN) maps on an elliptical nonreflecting boundary. We exploit the
special structure of the non-local DtN map as a low-rank update of the system matrix to efficiently
compute the matrix-vector products found in Krylov subspace based iterative methods. For the
complex non-hermitian matrices resulting from the Helmholtz equation, we use the BICG-STAB
iterative method. Domain decomposition with interface minimization was performed to ensure
optimal inter-processor communication. We show that when implemented as a low-rank update,
the non-local character of DtN does not significantly decrease the scale up and parallel efficiency
versus a purely approximate local boundary condition.

Introduction

Numerical solutions for acoustic radiation and scattering in unbounded domains require a large
number of element unknowns to resolve high wavenumber/frequency problems. To solve these
problems efficiently on today’s computer architecture, it is required to distribute the work and
memory on multi-processors and compute in parallel. A common method for solving unbounded
problems governed by the Helmholtz equation is to apply an artificial truncation boundary sur-
rounding the scatterer, where nonreflecting boundary conditions, infinite elements, or absorbing
layers are defined. Some of the infinite elements, particularly the unconjugated elements, provide
accurate solutions but may produce poorly conditioned matrices. Local approximate nonreflecting
boundary conditions and absorbing layer elements, preserve the sparsity of the matrix equations
within the bounded domains, but must be used with caution, as the errors produced by spurious
reflection are generally unknown. This sometimes requires multiple solutions where the trunca-
tion boundary must be systematically moved further away from the scatterer to provide solutions
within a given error tolerance.
A compelling alternative is the DtN map defined on a separable truncation boundary [1]. The

DtN nonreflecting boundary is exact in that harmonics in the solution are exactly reproduced.
By coupling all the nodes on the truncation boundary, therefore giving rise to a full lower rank
submatrix, DtN was considered computationally prohibitive. However, a major breakthrough
came, when, for a circle in two-dimensions or a sphere in three-dimensions, Malhotra et al. [2] and
Oberai et al. [3] recognized that the special structure of the DtN map may be used to efficiently
implement matrix-by-vector updates found in Krylov subspace based iterative solvers, thus making
the DtN highly competitive with approximate local conditions, but with significantly improved
accuracy. In Thompson et al. [4], the finite element formulation of the DtN map was extended to
elliptic and spheroidal boundaries, thus allowing for efficient solutions of highly elongated structures
such as a submarine or ship. In [5], it was shown that the interpretation of the DtN matrix as a
low-rank update to the sparse interior matrices is preserved, allowing for efficient iterative solutions
for the elliptic/spheroidal DtN. In this paper, we demonstrate an efficient algorithm to incorporate
the matrix update resulting from the exact non-reflecting DtN map into a parallel iterative process.



We show that the effect of the DtN map on the parallel efficiency of the iterative solution to the
sparse interior matrices is very small, and not significant.
We start by introducing the weak form of the exterior problem using the DtN map in elliptic

coordinates, and follow by the finite element implementation and presentation of the parallel
algorithm. A numerical example is given for scattering from an elliptic structure with parallel
efficiency on two different parallel computer systems.

Exterior Problem and FE Implementation

We consider time-harmonic scattering and radiation of waves in an infinite region D ⊂ R2, trun-
cated by an artificial elliptical boundary Γ thus enclosing a finite computational domain Ω. The
non-homogeneous Helmholtz equation is satisfied within Ω,

(∇2 + k2)φ = −f(x), x ∈ Ω (1)

where φ is the scalar field, k is the wavenumber and f is the source, which is confined to Ω.
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Figure 1: Scattering on unbounded domains. Exterior domain D is reduced to computational
domain Ω enclosed by the scatterer S and the truncation boundary Γ

For simplicity, but not at the loss of generality, the elliptical scatterer is assumed to have a ’soft’
boundary, i.e. φ = 0,x ∈ S. The non-reflecting boundary condition can be written in abstract
form as

∂φ

∂n
=M(φ), x ∈ Γ (2)

For the elliptic case, the DtN operator M(φ) can be written as [6]
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is the normalized wavenumber, µ0 and f are the radial coordinate and the focal distance of the
truncation boundary, respectively.
The weak form of (1)-(2) may be stated as: Find φ(x) in V, such that for all admissible weighting
functions φ̄ in V, the following variational equation is satisfied,

KΩ(φ̄, φ) +KΓ(φ̄, φ) = F (φ̄) (6)

with inner products (·, ·) : V × V 7→ C defined by the sesquilinear forms,

KΩ(φ̄, φ) :=
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and conjugate linear form (·) : V 7→ C defined by,

F (φ̄) :=

∫
Ω

φ̄fdΩ (9)

where V is a subspace of H1 for which φ(x) = 0,x ∈ S.
The boundary operator in (8) is composed of both a local and DtN part:

KΓ(φ̄, φ) = BΓ(φ̄, φ)︸ ︷︷ ︸
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where hθ = f
√
sinh2 µ+ sin2 θ is the metric for the elliptic coordinate system, and β1 =

1
2 tanhµ0−

ikf0 sinhµ0.

We discretize the domain Ω into a finite number of elements, Ω ≈ Ωh =
⋃Ne
e=1Ω

h
e and apply a

standard Galerkin approximation for both the trial and test functions, φ(x) ≈ φh(x) = N(x)d,
φ̄(x) ≈ φ̄h(x) = N(x)d̄, where N ∈ RNdof is a row vector of standard C0 Lagrangian interpolation
functions and d ∈ CNdof the column vector of the nodal values. This leads to the following linear
system:

Kd = f (13)

with K ∈ CNdof×Ndof an indefinite complex-symmetric matrix defined as follows:

K = (KΩ +BΓ)︸ ︷︷ ︸
sparse

+ MT · ZΓ ·M︸ ︷︷ ︸
DtN low rank update

(14)

where KΩ = KΩ(N
T ,N) is the term associated with the discretization of the Helmholtz equation

in Ω, BΓ = BΓ(N
T ,N) is the matrix resulted from applying the local radiation boundary operator,

M is the permutation matrix, and ZΓ is the low rank update associated with the DtN operator:

ZΓ = C
T ·∆ ·C (15)

where C = [c0, c1, . . . , cNm−1, s1, . . . , sNm−1] ,
∆ = − 1

π
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Parallel algorithm

In the context of iterative methods, the matrix-by-vector products, dot-products and vector up-
dates are the most computationally intensive operations, consequently it is important to distribute
them to processes handling submatrices of similar size. Ideally, a perfectly balanced mesh accom-
panied by a minimal interface will maximize the parallel efficiency. Consider the discretized domain
Ωh divided into Ns non-overlapping subdomains Ω

h
i such that

⋃Ns
i=1Ω

h
i = Ω

h. In the following,
subscript index i represents that respective quantity (matrix/vector) restricted on subdomain Ωhi ,
and indices Ω and ∂Ω indicate further restrictions to the interior and interface of that subdomain,
respectively. For example, yi = [yiΩ,yi∂Ω], where yi is a vector projected onto Ω

h
i , yiΩ is yi

restricted to the interior of Ωhi , and yi∂Ω is yi restricted to the boundary of Ω
h
i . Similarly,
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(16)

is a matrix projected on subdomain Ωhi with corresponding contributions from the subdomain
interior and interface, respectively.



Matrix-vector product
Following the decomposition in (14) and the notation convention (16), the matrix vector product
can be written in general form as
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is an assembly operation over subdomains. The first term in the right hand side of

(17) is sparse and we use efficient compact storage schemes (CSR) in our implementation. Each
subdomain contains the local matrix partitioned into interior and interface blocks, as in (16). We
compute first the interface matrix-vector product and then initiate its communication to the ad-
jacent processes, via non-blocking MPI ISEND calls. We proceed then to compute the interior part,
for which no communication is necessary, and in the end, update the interface data with the results
received from neighboring subdomains. The latter is a blocking operation since at the end of it,
all nodal values are to be used for other operations (e.g. dot-products, vector updates, calculation
of DtN term, etc).

Algorithm for computing (Ki +Bi)xi
For each process i:

1. Get xiΩ, xi∂Ω

2. Compute yi∂Ω = [Ki∂Ω,Ω +Bi∂Ω,Ω,Ki∂Ω,∂Ω +Bi∂Ω,∂Ω]

[
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3. MPI ISEND(yi∂Ω) to process j, adjacent to i (non-blocking)

4. Compute yiΩ = [KiΩ,Ω +BiΩ,Ω,KiΩ,∂Ω +BiΩ,∂Ω]

[
xiΩ
xi∂Ω

]

5. MPI RECV(yj∂Ω) from process j, adjacent to i (blocking)

6. yi∂Ω = yi∂Ω + yj∂Ω, j adjacent to i
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{
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h
i
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}
the group of subdomains to have an edge on the DtN boundary.

Because of the non-local character of DtN, an ‘all-to-all’ type of communication is required between
subdomains in ΩhΓ. By projecting the angular functions onto the finite element space the DtN term
becomes [2]

ZΓ =MΓ ·C
T ·∆ ·C ·MΓ (18)

where C is now a matrix (2Nm − 1)NΓ of angular modes computed at nodes on the truncation
boundary andMΓ is a boundary mass matrix, which simplifies to a diagonal if integrated at nodal
points. We emphasize that the DtN matrices Zi, defined on the subdomains adjacent to the trun-
cation boundary Γ, are never explicitly assembled, but their decomposition products from (15), Ci
and ∆, are stored locally on each subdomain in ΩhΓ.
The algorithm to compute the DtN term is the following:

Algorithm for computing Zixi
For each process i handling a subdomain in ΩhΓ:

1. Get xiΩ, xi∂Ω

2. ti1 =Mi

[
xiΩ
xi∂Ω

]
- extract nodes on the truncation boundary

3. ti2 =MiΓt
i
1; t

i
2 = t

i
2 + t

j
2 - multiply byMΓ on each subdomain followed by interface update

with adjacent subdomains in ΩhΓ

4. ti3 = C
iti2 - multiply by submatrix of angular modes



5. ti3 =
∑Ns
i=1

′ti3 - the prime under the sum indicates that values of the interface nodes are
divided by the number of subdomains sharing them

6. ti3 =∆t
i
3 - multiply by the matrix of radial modes

7. ti4 = C
T iti3 - multiply by the transpose of the submatrix of angular modes

8. zi =MiΓt
i
4; zi = zi + zj - multiply byMΓ on each subdomain followed by interface update

with adjacent subdomains in ΩhΓ

In the algorithm above, Mi is the permutation matrix on that subdomain. Technically, the map-
ping described in step 2 is achieved with a pointer indicating the positions of boundary nodes.
MiΓ and C

i are, respectively, the boundary mass and the matrix of angular modes, assembled on
subdomain i.
Step 5 contains the ‘all-to-all’ additive communication, as we need to sum the contributions of all
the subdomains in ΩhΓ and then communicate the result back to each subdomain in Ω

h
Γ. This is

accomplished using MPI ALLREDUCE(ti3, ... , MPI SUM,MPI DTN) the last variable being the commu-
nicator created to synchronize the processes handling subdomains in ΩhΓ.
The size of ti3 is 2Nm−1 which typically is not a large number, and as we will see in the results sec-
tion, for one of the architectures tested, the latency time when calling MPI ALLREDUCE is dominant
vs the actual communication of these short-length vectors.

Numerical experiments

Consider scattering of a plane wave φ(x) = e−ikx by an elliptic cylinder with focal distance f = 1
and radial coordinate µ = 0.1, such that the major and minor axes are, respectively, a = f coshµ
and b = f sinhµ. Also, as mentioned previously, we assume a ’soft’ scattering object, such that
φ = φs + φi = 0 on S, where we defined φ as the total field, φi as the incident field and φs as the
scattered field.
The computational domain is enclosed by a truncation boundary placed at µ = 0.5 and it is
discretized using an orthogonal mesh of 80 × 1400 quadrilateral elements (112,000 nodes). For a
wavenumber k = 2π we use Nm=0 (purely local B1 condition), 5, 10, 15, and 20 angular modes in
the DtN condition. The algorithm was implemented with MPI on 2 machines, using appropriate
FORTRAN 90 compilers, and the BICG-STAB iterative method. A 16 cpu Sun UltrasparcII with
450MHz cpu clock and 4GB shared memory, and a 32 cpu Linux cluster with Intel 900 MHz
processors and 16 GB of distributed memory.
Figure (2) shows the scaleup, while Fig. (3) shows the parallel efficiency for the 2 machines,
respectively. For the Sun machine, super-linear scaleup is shown up to 5 processors, while the
Intel machine maintains good scaleup beyond the 7 processors tested. We expect better scaleup
for larger test cases, since the ratio of computation/communication increases.

Conclusions

We show that incorporating an exact non-local DtN map as a low-rank update in an efficient
parallel algorithm for solving the Helmholtz’s equation provides accurate results with little extra
cost involved in communication when choosing the appropriate number of modes on the truncation
boundary. When implemented as a low-rank update, the non-local character of DtN does not sig-
nificantly decrease the scale up and parallel efficiency versus a purely approximate local boundary
condition.
Support for this work was provided by the National Science Foundation under Grant CMS-9702082 in
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Figure 2: Scaleup for the two parallel systems. (Left): Sun HPC with UltrasparcII cpu’s. (Right):
Linux cluster with Intel PIII cpu’s.
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Figure 3: Parallel fficiency for the two parallel systems. (Left): Sun HPC with UltrasparcII cpu’s.
(Right): Linux cluster with Intel PIII cpu’s.
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