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ABSTRACT 
 
The regularization of exact boundary integral Fredholm’s equation is proposed in the report. This approach 
allows to calculate the scattered or diffracted pulsed wave field on strongly curvilinear surfaces for practically 
arbitrary geometry. Mathematically the essence of the method consists in a replacement of exact 
Fredholm’s integral equations by their truncated analog, in which the contributions of geometrically 
shadowed areas are eliminated. This approach has a deep physical sense and allows to obtain the correct 
solutions when the direct numerical solution of exact integral equations leads to unstable results. 
 
 

The most powerful method for solution of diffraction problems of acoustical, electromagnetic or seismic 
waves on curved surfaces is the method of integral equations. In the framework of this method the problem is 
reduced to solution of exact Fredholm’s integral equations of first or second kind for wave field or its normal 
derivative taken on the scattered surface. For the pulsed wave fields, possessed the wide spectrum of 
wavelengths, this method is in essence the only one, which permits to obtain the solutions as in domains of 
short and long wavelengths as well as in the intermediate resonance domain 

The two-dimensional problem of scattering a scalar wave field on the curvilinear boundary of half-space is 
considered in the report. This statement from the physical point of view corresponds to an acoustical 
approximation for signal scattering at the curvilinear boundary of elastic media. 

In accordance with the Green’s theorem the relation between wave field in internal points of medium and 
values of its normal derivative and itself on the curved surface is represented by integral  
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 is the initial wave field from a source, and ),( SrrG
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 - is the Green’s function of free space.  



From (1) it is possible to derive the Fredholm’s equation of the second kind for the wave field or its 
normal derrivative on the curved surface. For example for the Dirichlet’s boundary condition ( )0)( =SrU
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For the case of Neuman’s boundary condition (
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equation of the second kind can be derived from (1) for wavefield on the boundary: 
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The integrals by surface in (2) have to be considered in the sense of its principal values. 

It is possible to obtain from (1) the diagram of radiation pattern ),( tD ϕ , which describes angular 

)(ϕ distribution of pulsed wavefield in the far wave zone. For the case of the Dirichlet’s boundary condition it 
has a view:  
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Similarly for the case of the Neuman’s boundary condition one can be written. 
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The numerical modeling of a wave field scattering by a curvilinear surface is usually based on integral 

equations mentioned above. Thus, the problem is reduced to solution of the equations (2). Then, substituting 
the obtained solution for the field on the surface or its normal derivative into relation (1), it is possible to 
calculate a wave field in any point of a half-space with the curvilinear boundary or to determine the radiation 
pattern (3). 

It is clear that the efficient application of the given approach for arbitrary scattered surface is possible 
with use of numerical methods of solution. The numerical solution of the equations (2) can be obtained by 
the iteration method or by the method of finite-difference approximation of the Fredholm’s integral equations 
of second kind (2), reducing them to a system of the linear algebraic equations for wave field in the certain 
boundary grid nodes.  

For enough smoothed irregularities of the surface the solution of the integral equations does not bring 
any difficulties. For example, the solution of the problem on the pulsed reflected wavefield, generated by 
explosion under mountain of gaussian shape (fig.1) with height to width ratio equaled to 0.5, is shown in 
fig.2.  

However, in case of the large slopes and curvatures of the surface irregularities in comparison with 
characteristic wavelength, the described methods became to be unstable and result to incorrect solutions. It 



occurs because for large slopes and curvatures of irregularities the multiply reflected on the surface waves 
begin to give essential contribution and there is also the contribution of mutually shadowed points of the 
surface. This contribution is cancelled in different orders of multiple scattering series corresponding to 
different orders of iterations [1]. Therefore the iterative process gives an incorrect result.  

Thus, the necessity appears for 
regularization of initial integral equations 
(2) 

To overcome this difficulty we suggest 
to eliminate certainly the contribution of 
mutually shadowed points of the surface 
that corresponds to the physics of the real 
wave field propagation. 

If, following to [1], to estimate a 
solution of the problem of plane wave field 
scattering on an arbitrary curvilinear 
surface by the stationary phase method in 
the short-wave approximation, then after 
the first iteration it is possible to see, that 
the field is equal to the field of external 
source and the sum of contributions of all 
stationary phase points. Further there are 
two types of stationary phase points: the 
reflecting one and shadowed one.  

 
 

 
 

 
Fig. 1. The problem geometry. 



Fig. 2. The pulsed radiation diagram for the explosion under mountain in geometry is 
shown in fig.1 for 5.0/ =ah . 

The contribution of shadowed stationary phase points is cancelled at the next iteration. Therefore at any 
finite number of iterations it is not possible to achieve the exact solution. This contribution becomes to be 
important at account of contribution of multiply reflected waves. 

The suggested regularization method is based on the approach when at solution of the integral equations 
the contribution of the source is taken into account only for the geometrically visible areas from the source, 
and the integration is fulfilled only on the mutually non-shadowed areas of the surface. To take into account 
the wavefield diffraction the visible areas were extended on a value proportional to wavelength. Thus, the 
contribution of mutually shadowed points of the surface is eliminated in the integral equation that 
corresponds to the physical picture of the real wavefield propagation. For more accurate description of the 
field currents in the light - shadow vicinity the approach suggested by Fock in [2] is used. Because the 
stationary phase points are closed one to another in the light - shadow vicinity, the wavefield in this area has 
a local character. It was shown in [2], that for arbitrary surface the field in the light - shadow vicinity is 
proportional to universal Fock’s function, for which there are tables and asymptotic representations. 

The developed approach has allowed us to obtain the correct solutions for surfaces with arbitrary large 
slopes and curvatures of irregularities. For example, the solution for the problem of explosion under 
mountain of gaussian shape with height to width ratio equaled to 3 is shown in fig. 3, which can not be 
calculated using the traditional approaches. 

 
 

 
 

Fig. 3. The pulsed radiation for the explosion under mountain in geometry is shown in 
fig.1 for 3/ =ah . 

 
It is also shown in the report, that represented regularization method can be correctly derived from a 

mathematical point of view with use of the exact integral equations.  



 
Let’s consider the initial integral equation (2) relatively the field on the surface V  with integral operator 

L  

LVVV += 02       (4) 
 

Let’s divide the integral operator on two parts −+ += LLL , where +L  is operator dealt with 

geometrical optics contribution from visible area and −L  is operator dealt with the same contribution from 

shadowed area. Analogously we can divide the initial field of source −+ += 000 222 VVV .  

Then on the first iteration of equation (4) we have  
 

VLVLVLVLVVV 2
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Taking into account, further, that in the short wave approximation the contributions of shadowing points 
conceal in different terms of series [1], we can require the execution of condition  
 

−+− −= 00 22 VVL .        (6) 

This condition can be considered as integral equation relatively unknown function +
0
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After simplification of equation (5) with condition (6) we can obtain: 
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Iteration of this equation leads to the following representation of the solution: 
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Thus, we obtain the series which does not contain the contributions of mutually shadowed areas: 

∑
∞

=

++++++++++ +=++++=

1

000

3

0

2

00 222222

n

n
VLVVLVLVLVV L  

Hence the obtained series is the solution of the following integral equation: 
 

VLVV ++ += 02         
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